
Challenge 3
The World’s Simplest Lock-Free Hash Set

VerifyThis at ETAPS 2022
Organizers: Marie Farrell, Peter Lammich

Steering Committee: Marieke Huisman, Rosemary Monahan,
Peter Müller, Mattias Ulbrich

2–3 April 2022, TU Munich, Germany

Disclaimer: the programs may contain bugs. If you find any, fix them and
mention the fix in your submission!

How to submit solutions: send an email to verifythis@googlegroups.com

with your solution in attachment. Remember to clearly identify yourself, stat-
ing your team’s name and its members.

Problem Description

This challenge is inspired by Jeff Preshing’s blog entry: The World’s Simplest
Lock-Free Hash Table.

This simple hash-set has a fixed capacity, only supports insert and member-
ship query operations, and uses linear probing for collision handling. How-
ever, it is thread-safe and implemented lock-free. At the core, the insert oper-
ation uses a compare-and-swap (CAS) operation to find a free spot for adding
the key to be inserted. An optimization replaces expensive CAS operations by
cheaper load operations when the table fills up.

The hashtable works with a key type K. It has a special value key_invalid

:: K that is used as placeholder for empty slots, and cannot be used as key.
Moreover, there is a function get_hash(size_t,K) :: size_t, such that get_hash(n,k)
returns a hash-code for k, in the range [0, n).

The compare and swap operation that we use returns the value stored in
target after the operation (whether swapped or not). You are free to replace it
with whatever similar operation your tool supports:

T compare_and_swap(T &target, T oldv, T newv) {

T result;

atomic {

if (target == oldv) target=newv;

result=target;

}

return result;

}

1

mailto:verifythis@googlegroups.com

typedef hset = array<K>

hset empty(size_t n) {

hset t = new K[n];
for (size_t i = 0; i < n; ++ i) t[i]=key_invalid;
return t;

}

// Assumes k 6= key_invalid

// returns true if key was inserted, false if table is full

bool insert(K k, hset t) {

size_t n = t.length;
size_t i0 = get_hash(n,k);
size_t i = i0;

do {

{ // Optimization: probe for potentially free spot

key kk = atomic_load(t[i]);
if (kk == k) return true; // Key already in table

if (kk 6= key_invalid) { // Spot taken, try next index

i = (i + 1) mod n; continue;

}

}

// Maybe i is still free when we try to put our key there

key k′ = compare_and_swap(t[i],key_invalid,k);
if (k′ == k) return true; // We (or someone else) stored our key

i = (i + 1) mod n; // Someone else interfered with us, try next index

} while (i 6= i0); // Stop if we went one full round

return false; // Table is full

}

// Assumes k 6= key_invalid

bool member(hset t, key k) {

size_t n = t.length;
size_t i0 = get_hash(n,k);
size_t i = i0;

do {

key k′ = atomic_load(t[i]);
if (k′ == k) return true; // found the key

if (k′ == key_invalid) return false; // found empty entry. Key not in.

i = (i + 1) mod n;
} while (i 6= i0);
return false; // Table full, our key is not in

}

2

Tasks

If your tool does not support concurrency, and you also cannot model concur-
rency on a more abstract level, implement and verify the sequential version of
this hash-set as last resort.

Implementation task. Implement the above hash-table. Use whatever atomic
operations your tool supports, but try to stay lock-free. If you have to use locks,
use a fine-grained lock around compare_and_swap, rather than locking the whole
table for the duration of an insert/member operation.

Verification tasks. Verify the following properties:

1. empty(n) creates an empty set with capacity n

2. member(k) == true, if insert(k) has been executed before (and returned
true)

3. member(k) == false, if no insert(k) that returned true can have been
executed

4. termination

5. every key is contained in the table at most once

6. if insert returns false, the table is full

You are free to re-phrase properties 2 and 3, but make sure you can prove
things like:

insert(1) || insert(2) || insert(3);

{ assert(member(1) and !member(42)) } || insert(4) || insert(5);

3

