Integrating Formal Verification and Assurance: An **Inspection Rover Case Study**

Hamza Bourbouh Marie Farrell Anastasia Mavridou Irfan Sljivo Guillaume Brat Louise A. Dennis Michael Fisher

Objective

To study the integration of formal verification results via the development of an assurance case, as applied to a robotic system, using a tool palette that includes the three NASA Ames tools FRET, CoCoSim, and AdvoCATE, as well as Event-B.

Methodology

Step 4: Refine System Model According to Mitigations

Step 0: Initial System Characterization

System: Autonomous rover undertaking an inspection mission. System Context:

- The objective of the rover is to explore a square grid of known size.
- Autonomously navigate to points of interest whilst avoiding obstacles and recharging when necessary.
- ► The system operates **indoors**.

Our Focus: The navigation system of the rover.

Step 1: Create Initial System Model

Step 5: Formalize Requirements and Create Specifications

Formal Requirements Elicitation Tool (FRET)

- FRET bridged the gap between the informal and formal steps.
- **[R1]**: Navigation shall always satisfy battery > 0

[R3.3]: GRA shall always satisfy if ! recharge then (if forAll_i & i_inGrid then (if ! visited[i] then heatpoints[goal] >= heatpoints[i]))

Update Requireme	ent		Status	ASSISTANT TEMPI	ATES
equirement ID Parent Requirement ID Project 11.2 R1 Rationale and Comments Rationale Charging station shall be selected as the next destination whenever the re to true Commende			g is set	ENFORCED: in the interval defined by the entire execution. TRIGGER: first point in the interval if (recharge) is true and any point in the interval where (recharge) becomes true (from false). REQUIRES: for every trigger, if trigger holds then RES also holds at the same time point. Beginning of Time TC TC = (recharge), Response = (goal = chargePosition).	
Requirement Description	ON	are optional unless indicated with	"*". For	Diagram Semantics Formalizations	~
nformation on a field format, click on its corresponding bubble.)	Future Time LTL	~
if recharge GRA shall immediately satisfy goal=chargePosition		ion		Past Time LTL (H (([recharge] & ((Y (! [recharge -> [goal = chargePosition])) Target: GRA component.	♪)) FTP))
			SEMANTICS	SIMULATE	

Step 6: Verification at System- and Component-Levels

Compositional Verification with CoCoSim

Step 2: Perform Preliminary Hazard Analysis

Step 3: Define Mitigations and Safety Requirements

visited[i] => heatpoints[goal]

Component-Level Verification with Event-B

Step 7: Document Verification Results and Build Safety Case in AdvoCATE

- Defining mitigations for the different hazards in order to **minimize the risk** of those hazards and their consequences.
- System-level requirements:
 - R1: The rover shall not run out of battery
 - R2: The rover shall not collide with an obstacle
 - R3: The rover shall visit all reachable heat points

Our Paper

Bourbouh, H., Farrell, M., Mavridou, A., Sljivo, I., Brat, G., Dennis, L. A., & Fisher, M. (2021). Integrating Formal Verification and Assurance: An Inspection Rover Case Study. In NASA Formal Methods Symposium (pp. 53-71). Springer.

The University of Manchester

SCAN ME

Work supported by NASA ARMD System-Wide Safety Project, UK Research and Innovation and EPSRC Hubs for "Robotics and AI in Hazardous Environments": EP/R026092 (FAIR-SPACE), and the Royal Academy of Engineering.