
Formal Modelling and Runtime Verification of
Autonomous Grasping for Active Debris Removal

Marie Farrell Nikos Mavrakis Angelo Ferrando Clare Dixon Yang Gao

Introduction

▶ Active debris removal in space is a necessary activity to maintain
and facilitate orbital operations. Current approaches adopt
autonomous robotic systems which are furnished with a
robotic arm to safely capture debris by identifying a suitable
grasping point.

▶ Formal verification methods enable us to analyse the software
that is controlling these systems and to provide a proof of
correctness that the software obeys its requirements.

▶ We describe the process that we used to verify a pre-existing
system for autonomous grasping which is to be used for active
debris removal in space.

AADL

▶ Both the hardware and software components of the service
vehicle (SV) and the target (TGT).

▶ SV contains a camera, arm (SVA) and gripper (SVG).
▶ Software components preprocess the input image

(imagepreprocessing), calculate the optimal grasp
(findoptimalgrasp) and control the arm and gripper
(controller).

Formal Requirements Elicitation Tool (FRET)

▶ Supports the formalisation, understanding and analysis of
requirements through a user-friendly interface with intuitive
diagrammatic explanations of requirement semantics.

▶ Users specify their requirements in restricted natural language,
called FRETISH, which embodies a temporal logic semantics.

SCOPE CONDITION COMPONENT SHALL TIMING RESPONSE

Verification: Dafny and ROSMonitoring

instrument

config.yaml

nodes

monitor.py

ROS

log.txt

oracle
spec

online
offline

▶ Static verification with Dafny.
▶ Runtime verification with ROSMonitoring.

Requirements Elicitation: 20 Requirements
ID English-Language Description FRET Formalisation
R1 The SV shall grasp the TGT at the BGP and draw it closer. SV shall satisfy (grasp(TGT, BGP) & closer(SV, TGT))

R1.1 The Camera of the SV shall be positioned at least 0.5m from the
TGT. Camera shall satisfy distance(Camera, TGT) ≥ 0.5

R1.2 The TGT shall be motionless before contact with the SVA. TGT shall satisfy if !contact(SVA, TGT) then motionless(TGT)
R1.3 The Camera shall return a valid point cloud. Camera shall satisfy valid(p)

R1.3.1 The point cloud shall be structured with maximum resolution of
1280 × 720. Camera shall satisfy maxRes(p) = 1280*720

R1.3.2 The point cloud shall not be empty. Camera shall satisfy length(p) > 0

R1.4 The imagepreprocessing shall return a filtered point cloud. Imagepreprocessing shall satisfy length(filteredimage) ≤ length(p)
& length(filteredimage) > 0

R1.5 findoptimalgrasp shall return the optimal grasp point (BGP) if one
exists. Findoptimalgrasp shall satisfy if exists(BGP) then return(BGP)

R.1.5.1
The BGP shall be optimal according to the criteria: minimum offset
from the TGT nozzle edge of 1cm and finger-surface yaw angle be-
tween −20 and 20 degrees.

Findoptimalgrasp shall satisfy offset(BGP, TGT) = 1 & -20 ≤ finger-
surfaceyaw & fingersurfaceyaw ≤ 20

R1.5.2 findoptimalgrasp shall generate several candidate grasping points. findoptimallgrasp shall satisfy length(grasps) ≥ 0

R1.6 If no BGP exists then findoptimalgrasp shall output an error mes-
sage. Findoptimalgrasp shall satisfy if !(exists(BGP)) then printerror

R1.7 Controller shall execute a joint trajectory to reach the BGP. Controller shall satisfy executeJointTrajectory(SVA, BGP)
R1.8 The SVA shall capture the TGT at the BGP. SVA shall satisfy captured(TGT) ⇒ contactpoint(SVA, TGT) = BGP

R1.9 The total pulling distance shall be between 0.3 and 0.5m. SV shall satisfy totalpullingdistance ≥ 0.3 & totalpullingdistance ≤
0.5

R2 The SV shall not collide with the TGT. SV shall always satisfy !collide(SV, TGT)
R2.1 The position of the SV shall not be equal to the position of the TGT. SV shall always satisfy !(position(SV) = position(TGT))

R2.2 The SV shall only make contact with the TGT at the BGP using the
SVG. SV shall always satisfy contactpoint(SVG, TGT) = BGP.

R2.2.1 No part of the SV, other than the SVG shall make contact with the
TGT. SV shall satisfy if !grasped then contactpoint(SV, TGT) = null

R2.2.2 The SVG shall only make contact with the TGT at the BGP (within
some margin of error).

SV shall satisfy if grasped then contactpoint(SVG,TGT) = BGP +
errormargin

R2.3 The SVG shall apply a force of 180N once contact has been made
with the TGT. SVG shall satisfy captured(TGT) ⇒ force = 180

Experimental Results: Simulation and Physical Testbed

▶ Intentionally injected a fault into the system.
▶ We reduced the grasping force used by the gripper to grasp the

target, substantially less than the lower limit of R2.3.
▶ Applied force was not able to hold the target because it slipped

through the gripper fingers, and the SV lost contact with the TGT.
▶ Fault correctly identified by the monitors for R1.9 and R2.3.

Gaps in the Requirements

▶ Monitors helped to identify gaps in the requirements.
R1.9: The total pulling distance shall be between 0.3 and 0.5 m.
R2.3: The SVG shall apply a force of 180N once contact has been made with the

TGT.

▶ Satisfied in simulation but not on the physical testbed.
▶ Cause: hardware limitations.

▶ We could not formally verify three of the requirements
R1.1: The Camera of the SV shall be positioned at least 0.5m from the TGT.
R1.2: The TGT shall be motionless before contact with the SVA.
R1.7: Controller shall execute a joint trajectory to reach the BGP.

Post-Implementation Verification

▶ System was nearly complete when we were asked to verify it.
▶ We were able to reverse engineer our verification method.
▶ Made minor adjustments to the software to expedite verification.
▶ Having an implementation to evaluate against was beneficial.
▶ Implementation and verification artefacts informed each other.
▶ Modularity was key.

Our Paper

Farrell, M., Mavrakis, N., Ferrando, A., Dixon, C., & Gao, Y. (2021). Formal Mod-
elling and Runtime Verification of Autonomous Grasping for Active Debris Removal.
Frontiers in Robotics and AI, 8.

Work supported by grants EP/R026092 (FAIR-SPACE) and EP/R026084 (RAIN) through UKRI under the Industry Strategy Challenge Fund (ISCF) for Robotics and AI Hubs in Extreme and Hazardous Environments.


