
Event-B in the Institutional Framework:

Defining a Semantics, Modularisation

Constructs and Interoperability for a

Specification Language

M A R I E FA R R E L L

A thesis submitted for the degree of

Doctor of Philosophy

Department of Computer Science

Maynooth University

October 2017

Supervisors: Dr. Rosemary Monahan & Dr. James F. Power

Head of Department: Prof. Adam Winstanley

C O N T E N T S

0 introduction and background material 0

1 introduction 1

1.1 Motivation . 3

1.2 Thesis Statement . 4

1.3 Summary of Contributions 5

2 background material 8

2.1 Event-B . 8

2.1.1 Example: Traffic-Lights System 10

2.1.2 Tool Support and Proof 12

2.2 Limitations of Event-B . 13

2.2.1 Modularisation as Decomposition in Event-B 14

2.2.2 Interoperability and Heterogeneity 20

2.3 The Theory of Institutions 23

2.3.1 Category-Theoretic Prerequisites 24

2.3.2 Institutions . 27

2.3.3 Example: FOPEQ - the Institution for First-Order

Predicate Logic with Equality 28

2.3.4 Refinement . 29

2.4 Addressing the Limitations of Event-B 31

2.4.1 Institution-Theoretic Modularisation Constructs . . 31

2.4.2 Institution-Theoretic Interoperability 34

2.5 Summary . 39

I defining a semantics 40

3 defining EVT - an institution for event-b 41

3.1 Introducing EVT . 41

i

3.2 SignEVT, the Category of EVT-signatures 42

3.3 The Functor SenEVT, yielding EVT-sentences 45

3.4 The Functor ModEVT, yielding EVT-models 50

3.5 The Satisfaction Relation for EVT 56

3.6 Relating FOPEQ and EVT 59

3.7 Pushouts and Amalgamation 62

3.8 Pragmatics of Specification Building in EVT 68

3.9 Writing Specifications in the EVT Institution 69

3.9.1 Representing Refinement Explicitly 73

3.10 Summary . 74

4 formalising a translational semantics for event-b 75

4.1 Introduction . 75

4.2 Syntax of Event-B . 76

4.3 A FOPEQ Interface . 79

4.4 Extracting the Signature . 80

4.5 Defining the Semantics of Event-B Superstructure Sentences 83

4.6 Defining the Semantics of Event-B Infrastructure Sentences 90

4.7 Implementing the Translational Semantics 92

4.8 Applying the Translational Semantics to an Example . . . 93

4.8.1 The Abstract Model 93

4.8.2 The First Refinement 95

4.8.3 The Second Refinement 95

4.9 Summary . 100

II interoperability 101

5 an institution-theoretic foundation for the trans-

lation from uml to event-b 102

5.1 Introduction . 102

5.2 UML - The Institution for Simple UML State Machines . . 103

5.2.1 ACT - The Underlying Action Institution 104

5.2.2 The Behavioural State Machine Institution 108

ii

5.2.3 The Protocol State Machine Institution 110

5.2.4 The State Machine Tripod of Institutions 111

5.3 Translating from UML to EVT via an Institution Comor-

phism . 111

5.3.1 Comparing EVT and UML 111

5.3.2 Relating the Action Institution and FOPEQ 113

5.3.3 Relating the UML Institution and EVT 113

5.4 Example . 120

5.4.1 Preservation of the Satisfaction Condition 124

5.4.2 Analysing a Selection of Potential Edge Cases . . . 125

5.5 The Comorphism as a Foundation for UML-B 126

5.5.1 Refinement . 129

5.6 Summary . 134

III modularisation 136

6 specification clones : an empirical study of the

structure of event-b specifications 137

6.1 Background and Introduction 137

6.1.1 Clones in Code and Specifications 138

6.1.2 Modularisation of Event-B Specifications 139

6.2 Analysing a Corpus of Event-B specifications: Metrics

and Refinement . 139

6.2.1 Quantifying Specification Size 142

6.2.2 Metrics for Event-B Specifications 144

6.2.3 Quantifying Refinements 146

6.3 Detecting Specification Clones 147

6.4 Results of the Clone Analysis 150

6.4.1 Context Clones . 150

6.4.2 Machine Clones . 151

6.4.3 Event Clones . 152

6.5 Decloning Event-B Specifications 153

iii

6.5.1 Decloning Contexts 155

6.5.2 Decloning Machines 155

6.5.3 Decloning Events . 156

6.6 Threats to Validity . 157

6.7 Summary and Future Work 158

IV conclusions 160

7 conclusions and future work 161

7.1 Future Work . 161

7.2 Summary . 162

a decloning event-b specifications using specification-

building operators 165

a.1 Rodin plugins . 165

a.1.1 Feature Composition 165

a.1.2 Generic Instantiation 167

a.1.3 Model Decomposition 169

a.1.4 Pattern . 170

a.1.5 Shared Event (Parallel) Composition 172

a.1.6 Modularisation Plugin 173

a.1.7 XEvent-B . 174

a.1.8 Related Plugins . 174

a.1.9 Rodin Compatabilities 176

a.2 Refinement as a Modularisation Technique 176

a.3 Discussion . 179

b mathematical notation and software artefacts 181

b.1 Mathematical Notation . 181

b.2 Institutions . 181

b.3 Institution Comorphisms and Semi-Morphisms 182

b.4 Software Artefacts . 182

b.4.1 clonedetector . 183

b.4.2 EB2EVT . 184

iv

b.4.3 EVTHets . 184

b.4.4 Specs . 185

bibliography 186

v

L I S T O F F I G U R E S

Figure 1.1 Interoperability can be achieved between UML

and Event-B using their respective institutions and

our EB2EVT translator tool. 7

Figure 2.1 Event-B specification of a traffic system. Lines

1–21 contain an Event-B specification for an ab-

stract machine that uses boolean flags to describe

the behaviour of the traffic system. The Event-B

context on lines 22–27 provides a specification for

the colours of a set of traffic–lights. Lines 28–59

contain a refined Event-B machine specification

for a traffic system. 10

Figure 2.2 The shared variable decomposition of machine M

into submachines M1 and M2. 16

Figure 2.3 The shared event decomposition of machine M into

submachines M1 and M2. 16

Figure 2.4 The modularisation approach to decomposition

using module interfaces and event groups. 18

Figure 3.1 The elements of an Event-B machine as presented

in Rodin and their corresponding EVT-sentences. . 46

Figure 3.2 These are the EVT-sentences corresponding to the

abstract Event-B traffic light system as illustrated

on lines 1–21 of Figure 2.1. 48

Figure 3.3 An example of an Event-B event, e, with natural

number variable x and boolean variable y. When

x > 2, the event increments the value of x and

toggles y to false. 51

vi

Figure 3.4 The construction of R ′ = R1 ⊗R2, the amalgama-

tion of R1 and R2. 66

Figure 3.5 A modular institution-based presentation corre-

sponding to the abstract machine mac1 in Fig 2.1. . 71

Figure 3.6 A modular institution-based presentation corre-

sponding to the refined machine mac2 specified

in Figure 2.1 (lines 28–59). 72

Figure 3.7 Defining the refinement relationships between the

concrete and abstract presentations. 74

Figure 4.1 We split the Event-B syntax into three compo-

nents: superstructure, infrastructure and a math-

ematical language 77

Figure 4.2 The Event-B syntax is parametrised by first-order

logic as indicated by our use of the nonterminals

predicate and expression. These will be mapped to

FOPEQ-formulae and terms respectively in our

translational semantics. 78

Figure 4.3 The FOPEQ interface provides access to a range

of operations and semantic functions which we

assume to exist. These are used throughout our

semantic definitions in Figures 4.4, 4.5, 4.7, 4.8,

4.9 and 4.10. 80

Figure 4.4 The semantics of EVT-signature extraction for ma-

chines. 81

Figure 4.5 The semantics of FOPEQ-signature extraction uses

the interface described in Figure 4.3 in order to

extract signature components from the definition

of a ContextBody. 82

vii

Figure 4.6 Signature extracted by application of the seman-

tic functions in Figures 4.4 and 4.5 to the Event-B

machine specification of mac2 in Figure 2.1. 83

Figure 4.7 The semantics of Event-B superstructure sentences

are defined by translating them into presentations

over EVT using the semantic function B and the

specification-building operators defined in the the-

ory of institutions (Table 2.3). Recall from Def-

inition 29 that objects of Pres are of the form

〈Σ,Φ〉 for a signature Σ and Φ ⊆ Sen(Σ). This

figure contains the translation for machine speci-

fications, the translation of events and contexts is

outlined in Figure 4.8. 85

Figure 4.8 The translation of the event and context compo-

nents of the Event-B superstructure sentences. This

is a continuation of the translation described in

Figure 4.7. 86

Figure 4.9 A semantics for Event-B infrastructure sentences

is provided by translating them into sentences

over EVT, denoted SenEVT(Σ), for machines and

sentences over FOPEQ, denoted SenFOPEQ(Σ), for

contexts. We use the interface operations and se-

mantic functions described in Figure 4.3 through-

out this translation. The event and context com-

ponents of this translation are contained in Figure

4.10. 87

viii

Figure 4.10 This is a continuation of the Event-B infrastruc-

ture sentence translation outlined in Figure 4.9.

Here, we provide the event and context specific

components of the translation of the infrastruc-

ture sentences. 88

Figure 4.11 The Haskell implementation of the B function

from Figure 4.9 as applied to a list of Event-B

event definitions. 92

Figure 4.12 Event-B abstract machine m0 cd. This specifica-

tion consists of the events ML out and ML in that

model the behaviour of cars leaving and entering

the mainland respectively. 93

Figure 4.13 Syntactically sugared EVT-specification as gener-

ated by EB2EVT that corresponds to the Event-B

model in Figure 4.12. 94

Figure 4.14 Event-B machine m1 with additional events IL in

and IL out to model the behaviour of cars enter-

ing and leaving the island. The variables a, b, and

c keep track of the number of cars on the bridge

going to the island, the number of cars on the

mainland and the number of cars on the bridge

going to the mainland respectively. 96

Figure 4.15 EVT-specification corresponding to the first re-

finement step as presented in Figure 4.14. 97

Figure 4.16 Event-B machine m2 that refines the Event-B ma-

chine in Figure 4.14 by adding new events Ml tl green

and Il tl green. The context Color on lines 1–8

adds a new data type which is used by the ml tl

and il tl traffic light variables. 98

ix

Figure 4.17 EVT-specification corresponding to the second re-

finement step as presented in Figure 4.16. 99

Figure 5.1 An overview of our approach to interoperability

between UML and Event-B. 103

Figure 5.2 The state machine tripod of institutions, encom-

passing the institutions for behavioural and pro-

tocol state machines, is formed using an underly-

ing institution of actions ACT. 104

Figure 5.3 UML state machine describing an automated teller

machine (ATM) based on the example in Knapp

et al. [73]. 120

Figure 5.4 Preprocessed version of the state machine from

Figure 5.3. Note that we have added the inter-

mediate state Inter1 during the preprocessing

phase in order to split up the method calls user-

Com.keepCard() and bankCom.markInvalid(cardId).121

Figure 5.5 UML-B representation of the ATM state machine

described in Figure 5.4. Note the addition of the

completion events PINEntered, Inter1 and Verified

as transitions. 127

Figure 5.6 These are the EVT-sentences extracted from the

Event-B specification shown in Figure 5.8. x and

x′ can be inferred from V, described above. 129

Figure 5.7 This is the context that was generated by the UML-

B plugin. It specifies a new datatype called behavioural STATES

that allows us to refer to the states in the corre-

sponding UML state machine. 129

x

Figure 5.8 The Event-B machine generated from the UML-

B model shown in Figure 5.5. Notice that every

transition in the state machine corresponds to an

event in this Event-B machine. 130

Figure 5.9 Protocol state machine from [73] as represented

using the UML-B plugin. 131

Figure 5.10 A refinement cube showing the various levels at

which refinement takes place throughout the ATM

example using the UML and Event-B formalisms

and their respective institutions. 132

Figure 5.11 The Event-B specification that was generated for

the abstract protocol machine that was shown in

Figure 5.9. 133

Figure 5.12 This figure illustrates that the proof obligations

associated with the Event-B models produced are

discharged automatically. 134

Figure 6.1 Histograms showing the distribution of the num-

bers of sentences per project for the smaller and

larger data sets. Note that the vertical axes here

are on different scales. 144

Figure 6.2 Histograms with kernel distribution describing

the number of refinement steps taken in both the

smaller and larger project sets. Note that the ver-

tical axes here are on different scales. 148

Figure 6.3 Histograms describing the distribution of Type-3

clones across the entire corpus of Event-B specifi-

cations. Note that we have omitted type-3 context

clones as there were relatively few of these. 153

xi

Figure 6.4 Decloning the context clone that appeared on an

intra and inter project basis throughout the Hemodial-

ysis Machine developments. 155

Figure 6.5 This figure illustrates how superposition refine-

ment between an abstract and a concrete specifi-

cation can be represented using the then specifi-

cation-building operator. Here the two Initialisation

events are merged as they have the same name. . 156

Figure 6.6 Decloning the events in the DepSatSpec Event-B

specification using specification-building operators.157

Figure A.1 We use the and operator to completely combine

features given by the machines mac1 and mac2

(lines 1–3) which have already been specified. We

use and in combination with the with operator to

ensure that the specifications of mac1 and mac2

are disjoint before they are merged (lines 4–7).

We use the hide via σ operator to partially com-

pose the features given by machines mac1 and

mac2 (lines 8–17). 167

Figure A.2 An instantiated machine obtained using the generic

instantiation plugin is shown on lines 1–11. It

is represented using specification-building oper-

ators on lines 12–17. Lines 18–27 use parametri-

sation to describe the same machine. 169

Figure A.3 Writing the shared variable style used in Figure

2.2 using specification-building operators 170

Figure A.4 Incorporating a pattern machine in the current

development mac1 171

Figure A.5 Shared Event Composition using the specification-

building operators 172

xii

Figure A.6 Representing the functionality of the XEvent-B

plugin using specification-building operators. . . . 174

Figure A.7 A parametrised version of the simple traffic light

system that was illustrated in Figure 2.1. 179

L I S T O F TA B L E S

Table 2.1 Rodin plugins that employ modularisation features. 19

Table 2.2 Rodin plugins that support interoperability for Event-

B. 21

Table 2.3 Institution-theoretic specification-building opera-

tors that can be used to modularise specifications

in a formalism-independent manner. Note that

SP1 and SP2 denote specifications written over

some institution, and σ is a signature morphism

in the same institution. 32

Table 5.1 Table of symbols summarising the components

of the action institution, ACT (Section 5.2.1), the

UML state machine institution, UML (Section 5.2.3)

and the institution for Event-B, EVT (Chapter 3). . 105

Table 6.1 Metrics for the Event-B projects that fall into the

“smaller” category. 140

Table 6.2 Metrics for the Event-B projects that fall into the

“larger” category. Outliers are indicated by an

asterisk∗. 141

Table 6.3 Summary statistics for the whole data set, and for

the two “smaller” and “larger” subdivisions. . . . 141

xiii

Table 6.4 The occurrence of clone pairs and clones per type

throughout the entire corpus. Note that ‘(+VI)’

indicates that the variants (where appropriate) and

invariants have been included in the analysis. . . . 151

Table A.1 Table summarising the latest version of the Rodin

Platform that each of the identified plugins is com-

patible with. 176

Table B.1 Summary of the mathematical notation used through-

out this thesis. 182

xiv

A B S T R A C T

Event-B is an industrial-strength specification language for verifying

the properties of a given system’s specification. It is supported by its

Eclipse-based IDE, Rodin, and uses the process of refinement to model

systems at different levels of abstraction. Although a mature formalism,

Event-B has a number of limitations. In this thesis, we demonstrate that

Event-B lacks formally defined modularisation constructs. Addition-

ally, interoperability between Event-B and other formalisms has been

achieved in an ad hoc manner. Moreover, although a formal language,

Event-B does not have a formal semantics. We address each of these

limitations in this thesis using the theory of institutions.

The theory of institutions provides a category-theoretic way of rep-

resenting a formalism. Formalisms that have been represented as in-

stitutions gain access to an array of generic specification-building op-

erators that can be used to modularise specifications in a formalism-

independent manner. In the theory of institutions, there are constructs

(known as institution (co)morphisms) that provide us with the facility to

create interoperability between formalisms in a mathematically sound

way.

The main contribution of this thesis is the definition of an institution

for Event-B, EVT, which allows us to address its identified limitations.

To this end, we formally define a translational semantics from Event-

B to EVT. We show how specification-building operators can provide

a unified set of modularisation constructs for Event-B. In fact, the in-

stitutional framework that we have incorporated Event-B into is more

accommodating to modularisation than the current state-of-the-art for

Rodin. Furthermore, we present institution morphisms that facilitate in-

xv

teroperability between the respective institutions for Event-B and UML.

This approach is more generic than the current approach to interoper-

ability for Event-B and in fact, allows access to any formalism or logic

that has already been defined as an institution. Finally, by defining

EVT, we have outlined the steps required in order to include similar

formalisms into the institutional framework. Hence, this thesis acts as a

template for defining an institution for a specification language.

xvi

P U B L I C AT I O N S

The publications that arose as a result of the research contained in this

thesis are as follows:

Peer-Reviewed:

[40] Marie Farrell, Rosemary Monahan, and James F. Power. “Provid-

ing a Semantics and Modularisation Constructs for Event-B using

Institutions”. In: 23rd International Workshop on Algebraic Develop-

ment Techniques, WADT. 2016, pp. 18–19

[41] Marie Farrell, Rosemary Monahan, and James F. Power. “An In-

stitution for Event-B”. in: Recent Trends in Algebraic Development

Techniques. WADT 2016. Vol. 10644. LNCS. 2017, pp. 104–119

[42] Marie Farrell, Rosemary Monahan, and James F. Power. “Specifi-

cation Clones: An empirical study of the structure of Event-B spec-

ifications”. In: 15th International Conference on Software Engineering

and Formal Methods, SEFM. vol. 10469. LNCS. 2017, pp. 152–167

[39] Marie Farrell, Rosemary Monahan, and James F. Power. “Modular-

ising and Promoting Interoperability for Event-B Specifications us-

ing Institution Theory (Poster)”. In: 28th European Summer School

in Logic, Language and Information, ESSLLI. 2016, p. 74

[36] Marie Farrell. “Using the Theory of Institutions to Integrate Soft-

ware Models via Refinement”. In: PhD Symposium at the 12th Inter-

xvii

national Conference on Integrated Formal Methods,PhD-iFM. 2016

[37] Marie Farrell, Rosemary Monahan, and James F. Power. “An Ap-

proach to Integrating Software Models via Refinement (Poster)”.

In: ACM womENcourage. 2014

Contributed:

[38] Marie Farrell, Rosemary Monahan, and James F. Power. “A Log-

ical Framework for Integrating Software Models via Refinement”.

In: British Colloquium for Theoretical Computer Science, BCTCS. 2016

xviii

A C K N O W L E D G M E N T S

First and foremost, I would like to thank my family and friends for their

unfaltering support and encouragement throughout my Ph.D. studies.

Thank you for always having faith in me and special thanks to Laura,

Jen and Danielle for always being there for me.

My supervisors Dr. Rosemary Monahan and Dr. James F. Power

deserve more gratitude than mere words can offer. Their patience, en-

couragement and difficult questions have shaped this thesis and I am

grateful for every second of the time and the laughs that we have shared.

I would like to extend my gratitude to Prof. Dominique Méry and Dr.

Ionut Tutu for their helpful discussions around the institution for Event-

B.

I would like to acknowledge the members the Principles of Program-

ming research group (POP) at Maynooth University (Andrew Healy,

Keith O’ Dúlaigh and Zheng Cheng) for always being there to lend a

hand over the past four years. In particular, I am eternally grateful to

Dr. Hao Wu for his continued friendship, encouragement and advice.

Thank you to my proof readers (Keith N., Rob, Louis, Will, Laura and

Trisha) for helping me along the way and special thanks to Kelly for the

many journeys that we have shared to and from Maynooth University.

Finally, to Gary - thank you for your patience and encouragement

throughout my Ph.D. studies. I am looking forward to our next adven-

ture together, now that I am, in your words, finally finishing university.

xix

D E C L A R AT I O N

I confirm that this is my own work and the use of all material from

other sources has been properly cited and fully acknowledged.

Marie Farrell

October 2017

xx

Part 0

I N T R O D U C T I O N A N D B A C K G R O U N D

M AT E R I A L

“Logic is justly considered the basis of all other sciences.”

– Alfred Tarski

1
I N T R O D U C T I O N

In the 1930s, Alfed Tarski developed a theory of metamathematics - a

mathematics for describing mathematics [117]. Later, Strachey and Scott

applied similar techniques to the realm of programming languages by

introducing a mathematical framework within which the semantics of

all imperative programming languages could be defined, and thus de-

notational semantics was born [107]. Denotational semantics made it

possible to determine whether any program, written in the language

over which the semantics was defined, computed the function that it

was intended to. The mathematical objects constructed using denota-

tional semantics represent the meaning of a particular program but they

do not offer a means for proving its correctness. Floyd-Hoare logic is

a calculus for reasoning about the correctness of computer programs

in terms of preconditions and postconditions (written as predicates)

[63]. Edsger Dijkstra proposed a reformulation of Floyd-Hoare logic

that assigns to each statement in the language a total function between

predicates over the state space [31]. This became known as the predi-

cate transformer semantics and it has provided a generic way to reason

about the properties of software systems [30].

Software has become an integral part of our daily lives, from the

cars that we drive to the medical devices that we use and as such, it

is often catastrophic when it fails. The Ariane 5 launcher exploded

due to a software error costing an estimated €350,000,000 in damages

[22]. A software error caused the Therac-25 machines to give massive

overdoses of radiation to six cancer patients resulting in three patients’

deaths [74]. More recently, the Airbus A400M crash in 2015 that killed

1

introduction

all four crew members has been linked to a software fault. Each of these

software failures could have been avoided if the appropriate techniques

had been used to formally verify the systems at hand.

Formal methods provide a mechanism by which we can ensure the

correctness of a given software system. Dijkstra’s predicate transformer

semantics was one of the first formal notations used for describing the

specification of a program [30]. This allows us to specify a program P in

terms of its preconditions and postconditions so that if the precondition

is true then the execution of P must establish the postcondition. Along

this vein, a myriad of languages have been developed allowing the user

to formally and systematically verify that software systems preserve

their pre and postconditions including VDM [68], Z [121], B [104], Event-

B [3], Dafny [78], Spec# [12], JML [77], TLA+ [76] and CSP [64] to name

but a few.

In this branch of formal software development, it is common to model

software at different levels of abstraction, starting with a very high level

abstract specification and finishing with a detailed concrete implemen-

tation. In formal software engineering we can map between these levels

of abstraction in a verifiable way through a process known as refinement

[8, 10, 86, 87, 96, 97]. The refinement calculus is a formal approach to

program construction and consists of a notation and rules for deriving

programs from their specifications [8, 10, 86, 87]. The theory of general

refinement postulates that

“The concrete entity C is a refinement of the abstract entity

A when no user of A could observe if they were given C in

place of A” [96, 97].

Formal refinement allows us to build up the system gradually and it

offers a means by which proofs carried out in an abstract model of the

system can be reused to prove properties about the concrete model. All

of the languages outlined above (apart from Spec#) support the process

2

1.1 motivation

of formal refinement, and, in this thesis we focus specifically on Event-

B.

Event-B is an industrial-strength, formal specification language used

for proving the safety of a system’s specification. The process of refine-

ment is core to the Event-B methodology, and proof support is achieved

via the Rodin platform, an Eclipse-based IDE for Event-B [3, 6]. Indus-

trial applications of Event-B include air-traffic control systems, train in-

terlocking systems and medical devices [70, 83, 112].

Tarski’s work also paved the way for the development of institution

theory which was introduced in the 1970s by Goguen and Burstall in a

series of seminal papers [15, 50–52]. Institutions are described in terms

of category theory, but draw on research in logical frameworks and

abstract model theory [65, 84, 88]. A given institution is a collection

of categories and functors, satisfying certain conditions, that acts as a

description of a logic. More precisely, an institution defines the vocab-

ulary, syntactic constructs, and meaning of validity within a particular

logic [52]. Moreover, institutions provide a framework within which it

is possible to formalise a given logic whilst providing access to an array

of generic modularisation constructs and a framework for defining in-

teroperability between them [16, 101]. Throughout this thesis, we inves-

tigate and apply these logic-based approaches in the setting of formal

software engineering, specifically to the Event-B formal specification

language. This provides a means for formalising its semantics, mod-

ularisation constructs and interoperability between Event-B and other

formalisms in this framework.

1.1 motivation

The formal approach to software development relies on being able to

describe properties of a program with a formally defined semantics,

3

1.1 motivation

typically logic-based, and being able to formally prove that these prop-

erties hold of a given model. The initial gulf between such formal meth-

ods and practical software engineering is increasingly bridged through

Model Driven Engineering (MDE), with relatively lightweight formal

methods, such as JML, Code Contracts and OCL becoming realistic el-

ements of software development [35, 72, 77, 120]. Other modelling ap-

proaches, such as those based on formal specification, verification and

model checking may also be used [66].

In this setting, there is a plethora of languages, based on different log-

ics, specifying different aspects of a system, often at different levels of

abstraction. Every individual language is inherently a formalisation of a

particular (set of) logic(s), and so each can be referred to as a formalism,

with the machinery provided by the language providing an accessible

way to use the underlying logic. In Event-B the non-logic components

of the language consist of the structuring constructs such as events, con-

text extending and machine refining which will be discussed in detail in

Section 2.1. Each of these formalisms is generally targeted at describing

very specific kinds of properties about a system, such as safety or tempo-

ral properties for example. As systems increase in complexity it is more

frequently necessary to verify more than one of these properties. This

results in the same system being independently modelled in multiple,

distinct formalisms, resulting in a time consuming and thus expensive

process. An environment that facilitates interoperability between these

formalisms in a provably correct way, would reduce the time and effort

in verifying software systems and provide a solid, formal foundation to

the theory of MDE. The theory of institutions provides an environment

for interoperability between the logics that underlie these formalisms,

and so, including the formalisms themselves into this framework would

provide interoperability at a higher level of abstraction.

4

1.2 thesis statement

1.2 thesis statement

Our core thesis is that the formalisms used for software verification,

such as Event-B, can be represented as institutions, resulting in the cre-

ation of a heterogeneous environment where they can be used along-

side each other using institution (co)morphisms [15, 52]. Specification-

building operators supply a generic set of modularisation constructs

that can be used by any formalism in this framework [100]. Another

benefit is the definition of the semantics of each of these formalisms in

a uniform way.

Therefore, we have developed an institution-theoretic formalisation

of the Event-B specification language that provides a formal seman-

tics, modularisation constructs and a framework for interoperability be-

tween Event-B and other formalisms. In general, interoperability be-

tween Event-B and other formalisms has been achieved in an ad hoc

manner by building bespoke plugins for Rodin as will be discussed in

Section 2.2.2. Our work provides a mathematical basis for the definition

of such interoperability in a provable and correct way. Incorporating

Event-B into the institutional framework involves specifying suitable

categories and functors for the syntax and semantics of Event-B speci-

fications, and verifying that they correctly meet the axiomatic require-

ments for institutional descriptions.

We have reconstructed Event-B case studies in the institutional con-

text to exhibit the robustness of our approach. In particular, the success-

ful integration of elements of specification from different formalisms

(UML and Event-B) demonstrates the clear advantage of our approach

over existing techniques.

5

1.3 summary of contributions

1.3 summary of contributions

The work described in this thesis has appeared in the following publi-

cations:

[40] Marie Farrell, Rosemary Monahan, and James F. Power. “Provid-

ing a Semantics and Modularisation Constructs for Event-B using

Institutions”. In: 23rd International Workshop on Algebraic Develop-

ment Techniques, WADT. 2016, pp. 18–19

[41] Marie Farrell, Rosemary Monahan, and James F. Power. “An In-

stitution for Event-B”. in: Recent Trends in Algebraic Development

Techniques. WADT 2016. Vol. 10644. LNCS. 2017, pp. 104–119

[42] Marie Farrell, Rosemary Monahan, and James F. Power. “Specifi-

cation Clones: An empirical study of the structure of Event-B spec-

ifications”. In: 15th International Conference on Software Engineering

and Formal Methods, SEFM. vol. 10469. LNCS. 2017, pp. 152–167

The main theoretical contribution of this thesis is the definition of

an institution for Event-B, EVT (Chapter 3) which yields three further

advances [40, 41]. The first is the definition of a semantics for the en-

tire Event-B formal specification language, including not only the ba-

sic mathematical language but also the structuring constructs (Chapter

4). The Heterogeneous Toolset, Hets [89], is the de facto standard tool

providing support for formalisms represented as institutions and for

some of the institution-theoretic avenues to interoperability. The Rodin

tool supports Event-B and we have bridged the gap between these two

environments by developing a translator, called EB2EVT, that uses the

translational semantics defined in Chapter 4 to translate Event-B specifi-

cations to specifications in the EVT institution that we have prototyped

in Hets.

6

1.3 summary of contributions

UML-B [114]

Event-B [3]

Tools: Event-B and the Rodin Platform Theory: Institutions and Comorphisms

UML [73]

EVT [40, 41]

(Chapter 3)

Rodin Plugin

Translation

Institution Comorphism

(Section 5.3)

EB2EVT (Section 4.8)

Figure 1.1: Interoperability can be achieved between UML and Event-B

using their respective institutions and our EB2EVT translator

tool.

Secondly, by incorporating the Event-B formal specification language

into the institutional framework we provide scope for interoperability

between Event-B and other formalisms that have been defined in this

framework. In order to exploit this we have defined interoperability

between UML and Event-B using their respective institutions and we il-

lustrate the power of this by example in Chapter 5. The interoperability

defined in Chapter 5 (institution comorphism) could have been imple-

mented in Hets had the UML institution been included there. Our

approach relied on the UML-B plugin, which translates UML state ma-

chines into Event-B, and EB2EVT to validate our comorphism [115]. We

have illustrated the interoperability that can be achieved between UML

and Event-B in Figure 1.1.

Finally, by working in the institutional framework we gain access to

a set of generic specification-building operators that facilitate the mod-

ularisation of specifications in a formalism-independent manner. Ad-

ditionally, we have contributed an empirical study of Event-B specifica-

tions that provided metrics for Event-B specifications and analysed the

programming language concept of a code clone at the specification level.

This study highlights the need for these modularisation constructs and

shown, by example, how they can be applied to Event-B specifications

(Chapter 6) [42].

7

1.3 summary of contributions

Further to this we note that the theory of institutions had, until now,

been predominantly used for representing logics, such as first-order

logic, modal logic etc. [100]. In this thesis, we illustrate that the in-

stitutional approach can be applied to state-based formal specification

languages, like Event-B, that are used in an industrial setting and fur-

nish improvements to the way in which specifications can be written.

We anticipate that this thesis can form a handbook for those wishing to

incorporate other languages used for formal verification into this frame-

work.

These contributions constitute the body of this thesis with Chapter

2 supplying the relevant background information and Chapter 7 sum-

marising these contributions.

8

2
B A C K G R O U N D M AT E R I A L

The sub-title of this thesis is “Defining a semantics, modularisation constructs

and interoperability for a specification language” and in this chapter we will

introduce each of these concepts and discuss how they are handled in both

Event-B and the theory of institutions.

2.1 event-b

Event-B evolved from the B-method (Classical-B) and it is an industrial-

strength, state-based formal specification language for system-level mod-

elling and verification for predominantly safety-critical systems [4]. It

uses a notation based on set theory to model the specification of a sys-

tem through a series of events that may be triggered nondeterminis-

tically. The objective of an Event-B specification is to provide a basis

for proving properties of a given specification. An Event-B specifica-

tion typically consists of Machines and Contexts. Machines (Definition

21) model the dynamic parts of a system’s specification and typically

contain event declarations (Definition 22) which model the state update.

Contexts model the static properties of a system’s specification (Defini-

tion 23).

Definition 21 (Event-B Machine). An Event-B machine specification is

an 8-tuple 〈id, RM, C, V, I, T, N, E〉where id is the machine identifier. The

optional refines clause indicated by RM contains the machine identifier

of the machine that the current machine refines. The optional set C

contains the identifiers of the contexts that this machine sees. V is a set

9

2.1 event-b

of variable declarations, I is a set of invariant declarations (predicates),

T is a set of theorems to be proven, N is a variant expression that is used

for proving termination properties and E is a set of event declarations.

Definition 22 (Event-B Event). An Event-B event declaration is a 7-tuple

〈id, S, RE, P, G, W, BA〉 where id is the event identifier and S is the event

status (either ordinary, anticipated or convergent). The optional set

RE contains the event identifiers of the events that the current event

refines. P is a set of event parameters (local variables), G is the event

guard (predicate), W is an optional set of witnesses (predicates) that

refine the parameters of the abstract event(s) listed in RE, and BA is the

set of action statements that are represented internally as before-after

predicates1.

Definition 23 (Event-B Context). An Event-B context specification is a

5-tuple 〈id, X, S, C, A〉 where id is the context identifier. The optional

set X contains the context identifiers for the contexts that the current

one extends. S is a set of carrier set declarations, C is a set of constant

declarations and A is a set of axioms.

One of the main differences between the structure of specifications

written using the B method and those in Event-B is that Event-B distin-

guishes between machines and contexts whereas B does not. Moreover,

operations in B can call other operations and in Event-B events are exe-

cuted in a nondeterministic manner. In particular, refinement in Event-B

is more general, enabling the addition of new events and a single event

may be refined by many events [4].

Event-B is based on Back’s Action Systems and supports two kinds

of refinement: data refinement and superposition refinement [9]. We

1 The only exception to Definition 22 is the Initialisation event which cannot have pa-

rameters, guards or witnesses [6]. All Event-B machines must have an Initialisation

event.

10

2.1 event-b

illustrate the structure of Event-B specifications and refinement using a

simple example.

2.1.1 example : traffic-lights system

Lines 1–21 of Figure 2.1 contain an Event-B machine, mac1, for a traffic-

lights system with one light signalling cars and one signalling pedes-

trians [6]. The goal of the specification is to ensure that it is never the

case that both cars and pedestrians receive the “go” signal at the same

time (represented by boolean flags on line 2). This machine specification

contains variable declarations (line 2), invariants (lines 3–6) and event

specifications (lines 7–21).

The machine mac1 specifies five different events (including the Init-

ialisation event defined on lines 8–10). As outlined in Definition 22,

each of these events has a guard, specifying when it can be activated,

and an action, specifying what happens when the event is activated.

For example, the set peds go event, as specified on lines 11–13, has

one guard expressed as a boolean expression (line 12), and one action,

expressed as an assignment statement (line 13). Events are essentially

predicate transformers that describe preconditions (guards) and post-

conditions (actions) with the action statement represented internally as

a before-after predicate that relates the values of the variables before

the event to the values of the variables after the event. For example, the

assignment x := x + 1 is interpreted as the before-after predicate x′ =

x + 1, where the primed variable, x′ denotes the after value of the vari-

able x. Moreover, each event has a status, which can be either ordinary,

convergent, or anticipated.

As outlined in Definition 21, machines can have a variant (natural

number) expression that is used to facilitate proving termination prop-

erties. Events with a status of anticipated must not increase the variant

11

2.1 event-b

1 MACHINE mac1
2 VARIABLES cars go, peds go
3 INVARIANTS
4 inv1: cars go ∈ BOOL
5 inv2: peds go ∈ BOOL
6 inv3: ¬ (peds go = true

∧ cars go = true)
7 EVENTS
8 Initialisation ordinary
9 then act1: cars go := false

10 act2: peds go := false
11 Event set peds go =̂ ordinary
12 when grd1: cars go = false
13 then act1: peds go := true
14 Event set peds stop =̂ ordinary
15 then act1: peds go := false
16 Event set cars go =̂ ordinary
17 when grd1: peds go = false
18 then act1: cars go := true
19 Event set cars stop =̂ ordinary
20 then act1: cars go := false
21 END

22 CONTEXT ctx1
23 SETS COLOURS
24 CONSTANTS red, green, orange
25 AXIOMS
26 axm1: partition(COLOURS,

{red}, {green}, {orange})
27 END

28 MACHINE mac2 refines mac1 SEES ctx1
29 VARIABLES cars colour, peds colour,
30 buttonpushed
31 INVARIANTS
32 inv1: peds colour ∈ {red, green}
33 inv2: (peds go = true)
⇔ (peds colour = green)

34 inv3: cars colour ∈ {red, green}
35 inv4: (cars go = true)
⇔ (cars colour = green)

36 inv5: buttonpushed ∈ BOOL
37 EVENTS
38 Initialisation ordinary
39 then act1: cars colour := red
40 act2: peds colour := red
41 Event set peds green =̂ ordinary
42 refines set peds go
43 when grd1: cars colour = red
44 grd2: buttonpushed = true
45 then act1: peds colour := green
46 act2: buttonpushed := false
47 Event set peds red =̂ ordinary
48 refines set peds stop
49 then act1: peds colour := red
50 Event set cars green =̂ ordinary
51 refines set cars go
52 when grd1: peds colour = red
53 then act1: cars colour := green
54 Event set cars red =̂ ordinary
55 refines set cars stop
56 then act1: cars colour := red
57 Event press button =̂ ordinary
58 then act1: buttonpushed := true
59 END

Figure 2.1: Event-B specification of a traffic system. Lines 1–21 contain

an Event-B specification for an abstract machine that uses

boolean flags to describe the behaviour of the traffic system.

The Event-B context on lines 22–27 provides a specification

for the colours of a set of traffic–lights. Lines 28–59 contain

a refined Event-B machine specification for a traffic system.

expression and those with a status of convergent must strictly decrease

the variant expression. Our example has no variant so all events have

the status ordinary.

Lines 22–27 of Figure 2.1 contain a context specification for the data-

type COLOURS. The axiom on line 26 explicitly restricts the carrier set

of COLOURS to only contain the constants red, green and orange.

Event-B supports the process of refinement and lines 28–59 of Figure

2.1 contains an Event-B machine specification for the machine mac2 that

12

2.1 event-b

refines the machine mac1 (lines 1–21 of Figure 2.1). The machine mac2

refines mac1 by first introducing the new context (as indicated by the

sees clause on line 28 and then by replacing the truth values used in the

abstract machine with new values from the carrier set COLOURS. This

new data type is used by the new variables cars colour and peds colour

on line 29 of Figure 2.1.

During refinement, the user typically supplies a gluing invariant re-

lating properties of the abstract machine to their counterparts in the

concrete machine [6]. The gluing invariants in Figure 2.1 (lines 33 and

35) define a one-to-one mapping between the concrete variables intro-

duced in mac2 and the abstract variables of mac1. The concrete variables

(peds colour and cars colour) can be assigned a value of either red or

green, thus the gluing invariants map the values of the concrete variable

to the values of the abstract variables (true to green and false to red). This

form of refinement is referred to as data refinement [3].

Superposition refinement in Event-B permits the addition of new vari-

ables and events [3] such as button pushed (line 30) and press button

(lines 57–58) in Figure 2.1. The existing events from mac1 are renamed

to reflect refinement; for example, the event set peds green is declared

to refine set peds go (lines 41–42). This event has also been altered via

the addition of a guard (line 44) and an action (line 46) that incorporate

the functionality of a button-controlled pedestrian light. This example

highlights the features of the Event-B language and we will refer to it

in the chapters that follow.

Event-B is used for proving the safety of a given specification and in

Section 2.1.2 we describe the tool support for proving these properties.

13

2.1 event-b

2.1.2 tool support and proof

Proof support for Event-B specifications is provided by the Rodin Plat-

form, an Eclipse-based IDE for Event-B, by generating a series of proof

obligations for a given Event-B specification [3]. The main safety proof

obligations consist of invariant preservation as invariants are required

to hold before and after every event [6]. Refinement is core to the Event-

B methodology, as such, a number of proof obligations are generated

that are specific to refinement. This allows the developer to establish

that the refinement steps that they have taken are correct [3, 5]. Other

proof obligations include well-definedness of expressions, termination

(using the variant expression) and feasibility of actions.

These proof obligations can be proven automatically or interactively

via the Rodin proving perspective with the Atelier-B theorem prover

typically providing proof support [81]. Other theorem provers (such as

Isabelle) have also been integrated as Rodin plugins [103]. Historically,

the semantics of Event-B specifications is understood in terms of the

corresponding proof obligations that are generated by Rodin [59]. This

offers the benefit of allowing Event-B to be used for specifying systems

in various modelling domains (cyber-physical systems, algorithms etc.),

however, it does not offer semantics for Event-B models. In Chapter 4,

we provide a formally defined translational semantics for Event-B, using

the theory of institutions, that does not inhibit this flexibility. Apart

from its lack of a formally defined semantics, we have identified and

summarised the limitations of the Event-B formal specification language

in Section 2.2.

14

2.2 limitations of event-b

2.2 limitations of event-b

Although a mature specification language, based on our experience

with Event-B and observing case studies, we have identified two pri-

mary limitations of Event-B.

1. Event-B lacks well-developed modularisation constructs as indicated

by the plethora of plugins in Table 2.1. Notice how, in Figure

2.1 the same specification has to be provided twice in the ma-

chine mac1. Here, the events set peds go, and set peds stop

are equivalent, modulo renaming of variables, to set cars go and

set cars stop.

2. When developing software using Event-B, it is at least necessary to

transform the final concrete specification into a different language

to get an executable implementation [112]. Current approaches

to interoperability in Event-B consist of a range of Rodin plugins

to translate to/from Event-B, but these often lack a solid logical

foundation.

In Sections 2.2.1 and 2.2.2, we examine the current approaches to ad-

dressing these pitfalls in specification languages, and specifically, in the

Event-B specification language.

2.2.1 modularisation as decomposition in event-b

As systems increase in both size and complexity, the more evident it

becomes that a “divide and conquer” approach to software engineer-

ing is necessary, particularly in the field of safety critical systems. The

standard approach to solving this problem is by adopting a modular

approach to software development. In modular software engineering,

a system is decomposed into multiple independent modules that can

15

2.2 limitations of event-b

be recomposed at a later stage to form the entire system [48]. There

are a multitude of benefits to this approach including an ease of code

maintenance, code reuse and enabling multiple engineers to work on

different components of the same system in parallel. In general, for-

mal specification languages utilise refinement as their main modularisa-

tion technique with support for other modularisation features typically

added after the language has been defined [34, 69]. This generally re-

sults in reengineering the specification language, as was the approach

taken with the Z specification language, resulting in Object-Z, in order

to provide scope for modular developments [113, 121]. Similarly, the

VVSL language was developed as an approach to modularisation for

VDM [85].

During the evolution of the Event-B formalism from Classical-B, cer-

tain facilities for the reuse of machine specifications disappeared. These

include the modularisation properties supplied by the keywords INCLUDES

and USES which facilitated the use of an existing machine in other de-

velopments [108]. Since then there have been numerous attempts at

regaining such modularisation techniques [17, 53, 54, 60, 95, 109]. Mod-

ularisation in Event-B does not require reengineering the language in

the same way as Object-Z or VVSL, but rather, modifications are made

by building plugins for Rodin and we examine these techniques here.

Modularisation, in terms of decomposition, in Event-B was first de-

scribed by Abrial as the act of cutting a large system of events into

smaller pieces that can each be refined independently of the others

[5]. This offers the advantage of separation of concerns even though

there still needs to be a link between the parts. The central idea is that

the specifications constructed via decomposition and further refinement

may be easily recombined resulting in a specification that could have

been obtained without using any decomposition techniques in the first

place. Three primary types of Event-B decomposition have been identi-

16

2.2 limitations of event-b

Figure 2.2: The shared variable decomposition of machine M into subma-

chines M1 and M2.

fied [60]. These are shared variable [2], shared event [17] and modularisation

[67]. Another related approach is generic instantiation [5]. These four ap-

proaches are further summarised below.

Shared Variable Decomposition

Using the shared variable approach, an Event-B machine is decomposed

into sub-machines based on events sharing the same variables as can be

seen in Figure 2.2 [5]. Since it is possible for multiple events to refer

to the same variable (e2 and e3 both refer to v2 in Figure 2.2) external

events are added (e3 e and e2 e in Figure 2.2) to abstractly describe the

behaviour of the shared variable in the other submachine(s). Neither

these shared variables nor external events may be refined in their re-

spective machine(s). Although there is no intention to recompose these

submodels, it is theoretically possible to do so [5]. This approach en-

ables the user to independently refine submodels and facilitates several

developers working on different submodels of the same large system at

the same time [2].

17

2.2 limitations of event-b

Figure 2.3: The shared event decomposition of machine M into subma-

chines M1 and M2.

Shared Event Decomposition

Shared event decomposition partitions an Event-B machine based on vari-

ables which participate in the same events, this is illustrated in Figure

2.3 [5]. Here, the variable v1 participates in events e1 and e2. The vari-

ables v2 and v3 participate in events e2, e3 and e4. The partitioning of

this machine places the events that refer to v1 in one machine and those

referring to the other variables in another. Both sets of variables {v1} and

{v2, v3} participate in event e2, thus, e2 is decomposed into two events

e2 1 and e2 2. Respectively, these new events each correspond to a re-

stricted version of the original event e2, each confined to the guards and

actions that refer to each of the variable sets (i.e. e2 1 contains only the

guards and actions of e2 that referenced v1). In this way, the machine M

is decomposed into submachines M1 and M2 such that M = M1‖M2 where ‖

denotes CSP-style parallel composition [64]. M1 and M2 do not share any

common variables and they interact over shared events which are events

with the same name [17]. When combining these machines the guards

are conjoined and actions of each shared event are composed in parallel.

Unlike the shared variable approach, data refinement is allowed on all

variables as there are no shared variables. It is also possible to inde-

18

2.2 limitations of event-b

pendently refine all shared events although the user must be careful to

avoid unintentional naming conflicts.

Modularisation

The modularisation approach to decomposition is illustrated in Figure

2.4 and is considered a special case of the shared variable approach [67].

Here, module interfaces (denoted by I) define operations as pairs of pre-

conditions and postconditions and they can also contain interface vari-

ables (IV). Module interfaces may “see” contexts and contain module

invariants but they do not contain any events. The module implementa-

tion (IM) contains groups of events (these are denoted by g1, g2 and g3).

Each event group corresponds to the implementation of one operation

(o1 or o2) in the module interface and vice versa. Events can call oper-

ations and then use the returned results. In this case, a set of rewrite

rules are used to translate the operation call back to standard Event-

B. This translation is not observed by the user but is used to generate

the corresponding proof obligations. Although based upon the shared

variable approach which was initially aimed at distributed systems, the

modularisation approach splits the functionality of a sequential system

into several modules that can be developed independently and in par-

allel [67].

Generic Instantiation

Generic instantiation facilitates the parametrisation of machines in order

to reuse refinements [5]. A machine refinement chain is generic with

respect to all of the carrier sets and axioms that have been collected in

the contexts used throughout. It is possible that, in some (new) Event-B

model, a developer can reuse another (previous) Event-B model by in-

stantiating the sets and constants of the old model. In order to reuse

the proofs of the old model, its sets, constants and axioms are proven as

19

2.2 limitations of event-b

Figure 2.4: The modularisation approach to decomposition using mod-

ule interfaces and event groups.

theorems after instantiation in the new model. This process facilitates

the reuse of existing Event-B models thus providing a more modular

approach to specification in Event-B.

An array of Rodin plugins have been constructed that offer modulari-

sation features and most of these are based on the approaches outlined

above. We have summarised the relevant plugins in Table 2.1 and in

Appendix A, we show how each of them can be captured in the theory

of institutions.

It is clear, from observations of industrial projects and the sheer vol-

ume of Rodin plugins developed for modularisation in Event-B, that

there is an underlying demand for modularisation [60, 67]. We investi-

gate this further in Chapter 6 by studying the frequency of specification

clones throughout a corpus of Event-B specifications (an approach that

we adopted from the code clone literature [98]).

Furthermore, although all of these plugins offer some form of mod-

ularisation for Event-B specifications, it is not clear how specifications

2 http://wiki.event-b.org/index.php/XEvent-B

3 http://wiki.event-b.org/index.php/Refactoring_Framework

20

http://wiki.event-b.org/index.php/XEvent-B
http://wiki.event-b.org/index.php/Refactoring_Framework

2.2 limitations of event-b

Plugin Name Description of functionality

Feature Composition Features are comprised of machines and their (seen) contexts, they

are combined by fusing variables and events. There are three distinct

functionalities of this plugin: (1) composition of machines, (2) making

machines disjoint before composition and (3) partial composition of

machines [53–55, 95].

Generic Instantiation Enables the reuse of generic Event-B models in other Event-B models

and provides a mechanism for extending the instantiation to a chain

of refinements. Here, the “pattern” machine is instantiated in order

to refine the “problem” machine [108]. Instantiation is achieved by

parametrising contexts and using the concept of a “sharing context” to

allow a context be seen by several machines. Special proof obligations

are generated to ensure that the instantiation of the pattern is valid.

Model Decomposi-

tion

Based on the shared variable/shared event approach discussed earlier,

the user selects the machine to be decomposed and defines the sub-

components (machines and contexts) to be generated [109]. Then they

select the style of decomposition to use (shared variable (A-style) or

shared event (B-style)) and can opt to decompose the contexts in a

similar fashion. These generated subcomponents can then be further

refined.

Pattern Provides design patterns for Event-B that facilitate the reuse of an ex-

isting Event-B model (pattern) in the current Event-B model (problem)

[47]. If at some point during development the developer realises that

the current model closely matches one that they have already com-

pleted as part of another project, then they match this pattern and

can incorporate it into the current problem by carrying out some re-

namings.

Shared Event (Paral-

lel) Composition

The composition is based on that proposed by Butler [17]. It uses

CSP-style parallel composition ‖ to compose machines through events.

This is the precursor to event refinement structures (ERS) which are

sometimes referred to as atomicity decomposition [43].

Modularisation Inspired by the modularisation approach that was outlined earlier,

modules split up an Event-B component (machine/context) and are

paired with an interface defining the conditions for incorporating one

module into another [67].

XEvent-B Provides a way of combining machines called machine inclusion2.

Theory Facilitates the addition of new data types, operators and axioms (“the-

ories”) for use in multiple independent Event-B models [18].

Renaming Refactory Supports the renaming of variables, parameters, carrier sets, con-

stants, events and other labelled elements (invariants, axioms, guards,

etc) 3.

Table 2.1: Rodin plugins that employ modularisation features.

21

2.2 limitations of event-b

developed utilising more than one of these plugins could be combined

in practice, or, if this is even possible.

2.2.2 interoperability and heterogeneity

Fundamentally, the application of formal methods to a system can in-

volve the use of multiple formalisms, as outlined in Section 1.1, either

because parts of the system are more agreeable to one formalism over

another or because of the sheer complexity of the system. By interop-

erability, we mean the integration of multiple formalisms to ensure the

correctness of the overall system. One approach to interoperability is

to provide a translation from each of the individual languages to one

underlying formalism. This is the approach taken by the group of ver-

ification languages (Spec# [12], Dafny [78], Chalice [79], etc.) that all

translate to the Boogie intermediate verification language which uses

the Z3 solver for verification [13]. Similarly, the Why3 platform pro-

motes the interoperability of a range of theorem provers via the WhyML

intermediate verification language [45].

The usual way of providing interoperability for Event-B is by employ-

ing a Rodin plugin to generate the desired code from the Event-B spec-

ification [19–21, 33, 93, 111, 119, 122]. A series of plugins offering this

functionality have been developed for Rodin and we provide an outline

of those relevant to this discussion in Table 2.2. These plugins generally

offer a bespoke translation from Event-B to another formalism but the

translation itself can be somewhat ad hoc in nature.

For example, the EventB2Java and EB2ALL plugins both generate

Java programs but the code that they generate is very different. EventB2Java

generates JML specifications alongside a multi-threaded Java implemen-

tation, whereas, EB2ALL does not include JML specifications and the

4 http://wiki.event-b.org/index.php/B2Latex

5 http://wiki.event-b.org/index.php/Transformation_patterns

22

http://wiki.event-b.org/index.php/B2Latex
http://wiki.event-b.org/index.php/Transformation_patterns

2.2 limitations of event-b

Plugin Description of functionality

UML-B Generates Event-B models from UML state machines and class di-

agrams [115].

B2Latex Generates Latex from Event-B specifications4.

EventB2Java Generates Java implementations with JML specifications from

Event-B models [20].

EventB2JML Generates JML-specified abstract Java classes [21].

EventB2Dafny Translates Event-B proof obligations to Dafny [19].

EventB2SQL Generates Java implementations of Event-B machines that store the

state of a machine in a database [119].

EB2ALL Generates C, C++, Java and C# from Event-B [111].

Tasking Event-B Generates multi-tasking Java, Ada and OpenMP C from Event-B

[33].

B2C Translates Event-B specifications to C code [122].

EHDL Supports VHDL code generation from Event-B models [93].

MBT Plugin Generates test sequences that cover the events of an Event-B model

[32].

Transformation

Patterns

Supports writing and running transformation scripts over Event-B

models in EOL5.

Table 2.2: Rodin plugins that support interoperability for Event-B.

Java programs that it generates are sequential [20, 82]. The EventB2SQL

plugin also generates Java implementations but, this plugin again, fol-

lows a different approach for its translation as it stores the state of an

Event-B machine in an SQL database [119]. Each of these independent

translations can be advantageous from the perspective of the developer,

but one might ask: are the corresponding Java implementations equiv-

alent, and, if so, why are there multiple plugins performing the same

task?

In theory, proving equivalence would require a fully formal semantics

for the portion of the Java language being targeted. Even with such a

semantics, there are two levels at which we can consider such an equiv-

23

2.2 limitations of event-b

alence: (1) between the Event-B specification and the Java program and,

(2) between the Java programs generated by each of the plugins. In

the first case, there is no way of measuring the equivalence between the

Event-B specifications and the corresponding Java code, since the nonde-

terministic nature of Event-B events must be resolved using scheduling

in Java. Thus, the closest that we can come to measuring such an equiv-

alence is by maximally obtaining a simulation relation where any step

of the program can be done by the specification but not vice versa, in

fact, this is a refinement relation.

In the second case, we recognise that the developers of each of these

plugins envisaged a different end product. The EventB2Java plugin

generates a Java implementation of an Event-B model that can undergo

further verification using JML, and the non-deterministic behaviour of

event triggering is implemented using multiple threads. In constrast,

the Java translation of EB2ALL forms part of a larger toolkit that can

also generate C, C++ and C#, with no further verification anticipated.

In this case, event triggering is implemented via a series of if-else

statements. Finally, the EventB2SQL plugin is designed so that Event-

B machines can be used to model and generate Java implementations

of database applications. It is thus clear that each of these translations

is bespoke, and so the translations are not equivalent, although very

useful in different scenarios.

Another approach to interoperability is the writing of heterogeneous

specifications where specifications written in different formalisms can

be reasoned about alongside one another [57]. Although beneficial, this

is generally difficult to achieve in practice, and often involves the devel-

opment of an entirely new toolset, such as Circus which provides an

environemnt for specifiying and verifying combinations of Z and CSP

[44]. Some Rodin plugins, such as UML-B, support a heterogeneous ap-

proach to specification in Event-B by specifying UML state machines

24

2.3 the theory of institutions

alongside Event-B models [115]. Another formalism that supports het-

erogeneity in this setting, but has not been represented as a plugin, is

the combined formalism Event-B‖CSP [105]. We will discuss the UML-

B heterogeneous approach to interoperability in more detail in Chapter

5 when we will use the theory of institutions to provide a mathematical

foundation for the interoperability provided by the UML-B plugin.

We believe that the theory of institutions can address the identified

pitfalls of modularisation and interoperability in Event-B, and we dis-

cuss this in Section 2.4. However, we first provide some of the mathe-

matical prerequisites of this theory in the Section 2.3.

2.3 the theory of institutions

The theory of institutions, originally developed by Goguen and Burstall

in a series of papers originating from their work on algebraic specifica-

tion, provides a general framework for defining a logical system [15, 50,

52]. Institutions are generally used for representing logics in terms of

their vocabulary (signatures), syntax (sentences) and semantics (models

and satisfaction condition). The basic maxim of institutions, inspired by

Tarski’s theory of truth [116], is that

“Truth is invariant under change of notation” [52].

The use of institutions facilitates the development of specification lan-

guage concepts, such as structuring of specifications, parametrisation,

and refinement. This is achieved completely independent of the un-

derlying logical system resulting in an environment for heterogeneous

specification and combination of logics [15, 101]. This was originally

illustrated in the definition of the Clear algebraic specification language

[16], and, more recently in the Common Algebraic Specification Lan-

guage (CASL) [90] and the Web Ontology Language (OWL) [7].

25

2.3 the theory of institutions

Goguen and Burstall also developed the notions of “charters” and

“parchments” as a way to generate institutions using the fact that the

syntax of a logical system forms an initial algebra [51]. However, this

approach does not receive much attention in the literature.

As the theory of institutions finds its foundations in category the-

ory, we provide some basic category theoretic definitions to frame our

description of institution theory in Section 2.3.1. We then present the

formal definition of an institution (Definition 28) and describe the in-

stitution for first-order predicate logic with equality, FOPEQ (Section

2.3.3). Furthermore, we discuss refinement in the institutional setting

and its correspondence with refinement in Event-B in Section 2.3.4.

2.3.1 category-theoretic prerequisites

Category theory, similar to set theory, provides a fundamental frame-

work for reasoning which has been applied across a range of disciplines

in computer science [49, 99, 118]. In set theory we examine objects, their

membership in a particular set and ways of reasoning about these sets.

Category theory abstracts away from the objects and allows us to reason

about the relationships between them. Category theory and set theory

are not contradictory but rather they are alternatives, each with a dif-

ferent emphasis [100]. From the perspective of institutions, category

theory provides a foundational framework for algebraic semantics and

specification languages.

A category (Definition 24) consists of a collection of objects, morphisms

between them and a morphism composition operation, ‘◦’, that must

preserve certain properties.

Definition 24 (Category). A category K consists of

A collection |K| of K-objects.

26

2.3 the theory of institutions

For each A, B ∈ |K|, a collection K(A, B) of K-morphisms from A to B.

For each A, B, C ∈ |K|, a composition operation

◦ : K(A, B)×K(B, C)→ K(A, C)

such that the following properties hold.

1. for all A, B, A ′, B ′ ∈ |K|, if 〈A, B〉 6= 〈A ′, B ′〉 then

K(A, B)∩K(A ′, B ′) = ∅

2. (existence of identities) for each A ∈ |K| there is a morphism

idA ∈ K(A, A) such that idA ◦ g = g for all morphisms g ∈

K(A, B) and f ◦ idA = f for all morphisms f ∈ K(B, A).

3. (associativity of composition) for any f ∈ K(A, B), g ∈ K(B, C)

and h ∈ K(C, D), f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Example: Set is the category of sets where objects are sets and mor-

phisms are set-theoretic functions. In this setting the composition of

morphisms is function composition. This category preserves the re-

quired properties 1,2 and 3 presented in Definition 24. Note that when

describing categories, morphisms are often referred to as arrows.

Functors (Definition 25) describe a mappings between categories with

objects mapped to objects and morphisms mapped to morphisms.

Definition 25 (Functor). A functor F : K1→ K2 from a category K1 to a

category K2 consists of:

A function FObj : |K1|→ |K2|.

For each A, B ∈ |K1|, a function FA,B : K1(A, B)→ K2(FObj(A), FObj(B)).

such that:

1 . F preserves identities: FA,A(idA) = idFObj(A) for all objects A ∈ |K|.

27

2.3 the theory of institutions

2 . F preserves composition: for all morphisms f : A→ B and g : B→ C

in K1, FA,C(f ◦ g) = FA,B(f) ◦ FB,C(g).

Example: The power set functor P : Set → Set maps each set to its

power set and each function f : X → Y to the map which sends Z ⊆ X

to f (Z) ⊆ Y [100].

In general, the term "forgetful functor" is used to refer to any functor

that, intuitively, forgets the structure of objects in a category, mapping

any structured object to its underlying unstructured set of elements. An

example of a forgetful functor is the functor that maps any topological

space to the set of its points.

Definition 26 (Functor Composition). If F : K1 → K2 and G : K2 →

K3 are functors, then their composition, denoted by F; G : K1 →

K3, is a functor such that: (F; G)Obj = FObj; GObj and (F; G)A,B =

FA,B; GF(A),F(B) for all A, B ∈ K1 [100].

Categories and functors form the basic building blocks of an institu-

tion as will be illustrated in Definition 28. However, for the purposes

of interoperability between institutions, natural transformations are re-

quired. A natural transformation defines a mapping between two func-

tors and these will be used to map between the syntax and semantics

parts of an institution as will be described in Section 2.4.1. Definition 27

formalises the category-theoretic concept of a natural transformation.

Definition 27 (Natural Transformation). Given categories K1 and K1,

and functors F : K1 → K2 and G : K1 → K2. A natural transformation

from F to G, is a family 〈τA : F(A) → G(A)〉A∈|K1| of K2-morphisms

such that for any A, B ∈ |K1| and K1-morphism f : A→ B the following

diagram commutes, that is τA; G(f) = F(f); τB:

28

2.3 the theory of institutions

K1 :

A

B

f

K2 :

F(A) G(A)

F(B) G(B)

τA

F(f) G(f)

τB

We have outlined the necessary category-theoretic prerequisites for

the theory of institutions and in the next sections we define what is

meant by an institution and how they can be used to address the limita-

tions of Event-B.

2.3.2 institutions

Based on Definitions 24 and 25, we define an institution as follows [52]:

Definition 28 (Institution). An institution INS for some given logic

consists of

A category Sign whose objects are called signatures and whose arrows

are called signature morphisms.

A functor Sen : Sign → Set yielding a set Sen(Σ) of Σ-sentences for

each signature Σ ∈ |Sign| and a function Sen(σ) : Sen(Σ) →

Sen(Σ ′) for each signature morphism σ : Σ→ Σ ′.

A functor Mod : Signop → Cat yielding a category Mod(Σ) of Σ-models

for each signature Σ ∈ |Sign| and a functor Mod(σ) : Mod(Σ ′) →

Mod(Σ) for each signature morphism σ : Σ→ Σ ′.

For every signature Σ, a satisfaction relation |=INS,Σ determining satisfac-

tion of Σ-sentences by Σ-models.

29

2.3 the theory of institutions

An institution must uphold the satisfaction condition: for any signa-

ture morphism σ : Σ→ Σ ′, translations Mod(σ) of models, Sen(σ)

of sentences, φ ∈ Sen(Σ) and M ′ ∈ |Mod(Σ ′)| then

M ′ |=INS,Σ ′ Sen(σ)(φ) ⇔ Mod(σ)(M ′) |=INS,Σ φ (2.1)

where Sen(σ)(φ) (resp. Mod(σ)(M ′)) indicates the application of

the signature morphism σ to the sentence φ (resp. model M ′).

Note that we often denote Mod(σ) : Mod(Σ ′) → Mod(Σ) by |σ :

Mod(Σ ′) → Mod(Σ) to indicate the model reduct along a signature

morphism σ : Σ → Σ ′. Model reducts are central to the definition of

an institution as they allow us to consider a model over one signature

as a model over another via a signature morphism. They are also core

to institution-theoretic refinement as discussed in Section 2.3.4. Funda-

mentally, specifications consist of a number of sentences, therefore, we

provide the following definition of a presentation to formally define how

these sentences are combined.

Definition 29 (Presentation). For any signature Σ, a Σ-presentation (some-

times called a flat specification) is a pair 〈Σ,Φ〉 where Φ ⊆ Sen(Σ).

M ∈ |Mod(Σ)| is a model of a Σ-presentation 〈Σ,Φ〉 if M |= Φ [100].

In this section, we have defined the concept of an institution and in

Section 2.3.3, we present the institution for first-order predicate logic

with equality.

2.3.3 example : FOPEQ - the institution for first-order

predicate logic with equality

Based on Definition 28, we outline the components of the institution for

first-order predicate logic with equality, FOPEQ [100].

Objects in the category of FOPEQ-signatures are tuples of the form,

ΣFOPEQ = 〈S,Ω,Π〉, where S is a set of sort names, Ω is a set of

30

2.3 the theory of institutions

operation names indexed by arity and sort, and Π is a set of pred-

icate names indexed by arity. Signature morphisms are sort/arity-

preserving functions that rename sorts, operations and predicates.

For any ΣFOPEQ = 〈S,Ω,Π〉, ΣFOPEQ-sentences are closed first-order

formulae built out of atomic formulae using ∧,∨,¬ ,⇒,⇔, ∃,∀.

Atomic formulae are equalities between 〈S,Ω〉-terms, predicate

formulae of the form p(t1, . . . , tn) where p ∈ Π and t1, . . . , tn are

terms (with variables), and the logical constants true and false.

Given a signature ΣFOPEQ = 〈S,Ω,Π〉, a model over FOPEQ consists of

a carrier set |A|s for each sort name s ∈ S, a function

fA : |A|s1 × · · · × |A|sn → |A|s for each operation name f ∈ Ωs1...sn,s

and a relation pA ⊆ |A|s1 × · · · × |A|sn for each predicate name p ∈

Πs1···sn , where s1, . . . , sn, and s are sort names.

The satisfaction relation in FOPEQ is the usual satisfaction of first-

order sentences by first-order structures. This amounts to eval-

uating the truth of the FOPEQ-formula using the values in the

carrier sets supplied by the models.

2.3.4 refinement

As described in Chapter 1, the refinement calculus allows us to con-

struct a specification gradually via a sequence of verifiable refinement

steps [8, 86, 87]. In Section 2.1.1 we described how Event-B supports

refinement, since refinement is so central to Event-B specification, any

formalisation of the Event-B language must be capable of capturing re-

finement.

The theory of institutions equips us with a basic notion of refinement

as model-class inclusion where the class of models of a specification con-

31

2.3 the theory of institutions

tains the models that satisfy the specification. We formally define what

is meant by model-class in Definition 210.

Definition 210 (Model-Class). For any Φ ⊆ Sen(Σ) of Σ-sentences, the

class ModΣ(Φ) ⊆ |Mod(Σ)| of models of Φ is defined as the class of all

Σ-models that satisfy all the sentences in Φ.

Note that we omit the Σ subscript where the signature is clear from

the context. With regard to institution-theoretic refinement, the class of

models of the concrete specification is a subset of the class of models of

the abstract specification [100].

We consider two cases: (1) when the signatures are the same and (2)

when the signatures are different. In the case where the signatures are

the same, refinement is denoted as:

SPA v SPC ⇔ Mod(SPC) ⊆Mod(SPA)

where SPA is an abstract specification that refines (v) to a concrete spec-

ification SPC, Mod(SPA) and Mod(SPC) denote the class of models of the

abstract and concrete specifications respectively. This means that, given

specifications with the same signature, the concrete specification should

not exhibit any model that was not possible in the abstract specification.

This equates to the definition of general refinement outlined in Chapter

1 [96].

In terms of Event-B, data refinement is not supported in this way be-

cause it would involve a change of signature. This was the case when

refining the boolean variables in the traffic light example to variables

over the COLOURS data type (Section 2.1.1). Instead, refinement oc-

curs between machines by strengthening the invariants and the guards

but does not provide any new variables or events. In this case, the

specification is made more deterministic by further constraining the in-

variants and guards. This increase in determinism is supported by the

refinement calculi described in Chapter 1 [8, 11, 86, 87].

32

2.4 addressing the limitations of event-b

When the signatures are different and related by a signature mor-

phism σ : Sig[SPA]→ Sig[SPC] then we can use the corresponding model

morphism in order to express refinement. This model morphism is used

to interpret the concrete specification as containing only the signature

items from the abstract specification. Here, refinement is the model-

class inclusion of the models of the concrete specification restricted into

the class of models of the abstract specification using the model mor-

phism. In this case we write:

SPA v SPC ⇔ Mod(σ)(SPC) ⊆Mod(SPA)

where Mod(σ)(SPC) is the model morphism applied to the model-class

of the concrete specification SPC. This interprets each of the models of

SPC as models of SPA before a refinement relationship is determined.

In this scenario, both data refinement and superposition refinement

are supported, since the refined or added variables and events can be

removed, using a suitable model morphism as outlined above, before

refinement is completed. Schneider et al. used a similar notion of hiding

when they provided a CSP semantics for Event-B refinement [106].

In this section, we have defined what is meant by an institution and

discussed institution-theoretic refinement with respect to Event-B. In

Section 2.4, we describe how the theory of institutions can be used to

address the limitations of Event-B that we identified in Section 2.2.

2.4 addressing the limitations of event-b

In Section 2.2, we identified two limitations of the Event-B formal spec-

ification language; (1) a lack of well-defined modularisation constructs

and (2) an ad hoc approach to interoperability. Our thesis is that the

theory of institutions can address these limitations and so we outline

the potential solutions that they offer here.

33

2.4 addressing the limitations of event-b

Specification-

Building Operator

Description

SP1 with σ Renaming of signature components (sort, operation and pred-

icate names in FOPEQ for example) using the signature mor-

phism σ. The resultant specification is the same as the original

with the appropriate renamings carried out. This corresponds

to the functionality of the Renaming Refactory Rodin plugin de-

scribed in Table 2.1.

SP1 then . . . Extends the specification SP1 by adding new sentences after the

then specification-building operator. This operator can be used

to represent superposition refinement of Event-B specifications

by adding new variables and events.

SP1 and SP2 Combines the specifications SP1 and SP2. It is the most straight-

forward way of combining specifications with different signa-

tures. This is achieved by forming a specification with a signa-

ture corresponding to the union of the signatures of SP1 and

SP2.

SP1 hide via σ Hiding via the signature morphism σ allows viewing a specifi-

cation, SP1, as a specification containing only the signature com-

ponents of another specified by the signature morphism σ. This

is useful for representing refinement as it allows a concrete spec-

ification to be viewed as one written only using signature items

supported by its corresponding abstract specification. Thus rep-

resenting the refinement relation between specifications over dif-

ferent signatures.

Table 2.3: Institution-theoretic specification-building operators that can

be used to modularise specifications in a formalism-

independent manner. Note that SP1 and SP2 denote speci-

fications written over some institution, and σ is a signature

morphism in the same institution.

2.4.1 institution-theoretic modularisation constructs

The theory of institutions equips us with an array of specification-building

operators that can be used to write modular specifications in a for-

34

2.4 addressing the limitations of event-b

malism independent manner [15, 100]. The individual specification-

building operators are summarised briefly in Table 2.3.

Built on these specification-building operators is the concept of paramet-

rised specifications that are defined using other specifications as param-

eters. This is similar to the Generic Instantiation approach to Event-B

modularisation described in Section 2.2.1. Parametrisation is a more

general way of combining specifications than that of the specification-

building operators providing λ-abstraction for user-defined abbrevia-

tions where variables in β-reduction range over specifications [100].

Parametrisation caters for a more elegant approach to modularisation

than that achieved using specification-building operators in isolation.

We note that a parametrised specification can be rewritten in terms of

the specification-building operators outlined in Table 2.3 [100]. The use

of parametrisation in tandem with the hide via specification-building

operator provides us with an elegant way to describe data refinement

(an example of this can be viewed in Appendix A.2 [91].

A category-theoretic prerequisite for the successful usage of these

specification-building operators and parametrisation, is that, for any

given institution the category of signatures must have pushouts and the

category of models must admit the amalgamation property [100].

Definition 211 (Pushout). The pushout of two morphisms σ1 : Σ → Σ1

and σ2 : Σ→ Σ2 is an object, Σ ′, together with a pair of morphisms σ ′1 :

Σ1 → Σ ′ and σ ′2 : Σ2 → Σ ′ such that σ ′1 ◦σ1 = σ ′2 ◦σ2. For any other such

(Σ ′′,σ ′′1 ,σ ′′2), for which the following diagram commutes, there must be

a unique u : Σ ′ → Σ ′′ so that the following diagram commutes.

35

2.4 addressing the limitations of event-b

Σ

Σ1

Σ ′

Σ2

Σ ′′

σ1

σ ′1 σ ′2

σ2

σ ′′1 σ ′′2

u

Pushouts provide a way to combine structures of various kinds. Us-

ing the diagram above, given objects Σ1 and Σ2, the pair of morphisms

denoted by σ1 : Σ → Σ1 and σ2 : Σ → Σ2 indicate the common source

that some “parts” of Σ1 and Σ2 come from. The pushout puts together

Σ1 and Σ2 while identifying the parts coming from the common source

and keeping the new parts disjoint [100].

For example in Set, the pushout is given by the disjoint union of Σ1

and Σ2, where elements that come from the same source (Σ) are identi-

fied, together with the morphisms σ ′1 and σ ′2 as shown above. Thus the

pushout, P, in Set, is given by the formula P = (Σ1∪̇Σ2)/ ∼ where ∼ is

the least equivalence relation such that σ ′1 ◦ σ1(x) ∼ σ ′2 ◦ σ2(x) for x ∈ Σ.

Definition 212 (Amalgamation). In any institution, a commuting square

of signature morphisms

Σ

Σ1

Σ ′

Σ2

σ1

σ ′1 σ ′2

σ2

is an amalgamation square if and only if for each Σ1-model M1 and a

Σ2-model M2 such that M1|σ1= M2|σ2 , there exists a unique Σ ′-model

M ′ called the amalgamation of M1 and M2, such that M ′|σ ′1= M1 and

36

2.4 addressing the limitations of event-b

M ′|σ ′2= M2. The amalgamation M ′ may be denoted by M1 ⊗σ1,σ2 M2 or

simply by M1 ⊗M2 [27].

In order for an institution to have good modularity properties, with

respect to the specification-building operators, it is necessary that the

institution have the weak amalgamation property where the uniqueness

requirement of Definition 212 is dropped.

It is possible for the current approaches to modularisation for the

Event-B language to be captured using these specification-building op-

erators and a more comprehensive description of this on a per plugin

basis can be found in Appendix A.

As mentioned earlier, the specification-building operators are generic

in that they can be used in an institution independent manner. Thus,

an interesting question is how specifications that are written using the

specification-building operators in different institutions can be com-

bined? We discuss interoperability between institutions in Section 2.4.2.

2.4.2 institution-theoretic interoperability

In Section 2.2.2, we distinguished two kinds of interoperability for spec-

ification languages, that of translating from one language to another

and that of heterogeneous specification. The theory of institutions sup-

ports both of these approaches by developing concepts of institution co-

morphisms (Definition 214), semi-morphisms (Definition 215), duplex

institutions (Definition 216) and by using a Grothendieck construction

[100].

In order to illustrate some of these constructs we define the institution

of equational logic, EQ in Definition 213 [100].

Definition 213 (EQ). The institution of equational logic is composed of

the following:

37

2.4 addressing the limitations of event-b

Objects of SignEQ are pairs, 〈S,Ω〉 where S is a set of sort names and

Ω is a set of sort-indexed operation names.

Sentences in EQ are quantifier-free FOPEQ first-order logic formulae

with equality as the only predicate.

Models consist of a carrier set |A|S for each sort name in S and a func-

tion fA : |A|s1 × |A|sn → |A|s for each operation name f ∈ Ωs1...sn,s.

The satisfaction relation is the usual satisfaction is the usual satisfac-

tion of a Σ-equation by a Σ-model.

It is clear to see that this institution shares many commonalities with

the institution for first-order logic, FOPEQ, as described in Section 2.3.3

and we will illustrate some of these relationships in what follows.

Institution comorphisms embed a primitive institution into a more com-

plex one and are defined as follows.

Definition 214 (Institution Comorphism). An institution comorphism

ρ : INS→ INS ′ is composed of:

A functor ρSign : Sign→ Sign ′.

A natural transformation ρSen : Sen → ρSign; Sen ′, that is, for each

Σ ∈ |Sign|, a function ρSen
Σ : Sen(Σ)→ Sen ′(ρSign(Σ)).

A natural transformation ρMod : (ρSign)op; Mod ′ → Mod, that is, for

each Σ ∈ |Sign|, a functor ρMod
Σ : Mod ′(ρSign(Σ))→Mod(Σ).

An institution comorphism must ensure that for any signature Σ ∈

|Sign|, the translations ρSen
Σ of sentences and ρMod

Σ of models preserve the

satisfaction relation, that is, for anyψ ∈ Sen(Σ) and M ′ ∈ |Mod(ρSign(Σ))|:

ρMod
Σ (M ′) |=Σ ψ ⇔ M ′ |= ′

ρSign(Σ)
ρSen
Σ (ψ) (2.2)

and the relevant diagrams, as indicated by Definition 27, in Sen and

Mod commute for each signature morphism in Sign [100].

38

2.4 addressing the limitations of event-b

Example: It is clear that there is an institution comorphism ρ : EQ→

FOPEQ that embeds EQ into FOPEQ. It is structured as follows:

ρSign : SignEQ → SignFOPEQ includes EQ-signatures and their mor-

phisms into the category of FOPEQ-signatures by equipping them

with the empty set of predicate symbols.

For each signature Σ ∈ SignEQ, ρSen : SenEQ(Σ) → SenFOPEQ(ρ
Sign(Σ))

maps any Σ-equation to the corresponding universally quantified

equality as a FOPEQ-sentence.

For each signature Σ ∈ SignEQ, ρMod : ModFOPEQ(ρ
Sign(Σ))→ModEQ(Σ)

is the identity functor.

It is easy to see that the satisfaction condition holds.

Institution comorphisms supply the translation-based approach to in-

teroperability. In Chapter 5 we will define a comorphism between our

institution for Event-B (Chapter 3) [40, 41], and the institution for UML

state machines [73]. This comorphism provides a mathematical founda-

tion to the interoperability supplied by the UML-B Rodin plugin.

Tool support that offers interoperability between institutions is given

by the Heterogeneous Toolset, Hets. Hets, written in Haskell, pro-

vides a general framework for parsing, static analysis and for proving

the correctness of specifications in a formalism independent and thus

heterogeneous manner [89]. In Hets, each formalism (expressed as an

institution) is represented as a logic. In this setting, interoperability be-

tween formalisms is defined using institution comorphisms to relate the

syntax of different logics and formalisms.

In contrast, institution semi-morphisms provide a means for constrain-

ing an institution by another and thus support a heterogeneous ap-

proach to interoperability although they are not supported in Hets.

Definition 215 (Institution Semi-Morphism). An institution semi-morp-

hism µ : INS→ INS’ consists of:

39

2.4 addressing the limitations of event-b

A functor µSign : Sign→ Sign ′.

A natural transformation µMod : Mod→ (µSign)op; Mod ′ [100].

Example: We can define an institution semi-morphism µ : FOPEQ→

EQ as containing the following components:

µSign is the functor mapping any first-order signature Σ = 〈S,Ω,Π〉 ∈

|SignFOPEQ| to the EQ-signature µSign(Σ) = 〈S,Ω〉 ∈ |SignEQ|. The

FOPEQ-signature morphisms are mapped to EQ-signature mor-

phisms accordingly by forgetting about the predicate component

of the morphisms.

For each FOPEQ-signature, Σ ∈ |SignFOPEQ|, µ
Mod : ModFOPEQ(Σ) →

ModEQ(µ
Sign(Σ)) is the functor that forgets about the predicate

component of the FOPEQ-model and maps the model-morphisms

accordingly [100].

Based on semi-morphisms as described in Definition 215, duplex in-

stitutions offer another approach to interoperability by enriching one

institution by the sentences of another [100].

Definition 216 (Duplex Institutions). Given an institution semi-morph-

ism µ : INS1 → INS2, we define the duplex institution INS1 plus INS2

via µ, which enriches INS1 by INS2-sentences reinterpreted by µ as

follows:

INS1 plus INS2 via µ has the same signatures as INS1: Sign =

SignINS1 .

For each Σ ∈ |Sign|, the set Sen(Σ) of Σ-sentences of INS1 plus INS2

via µ includes Σ-sentences of INS1 as well as µSign(Σ)-sentences

of INS2, where the latter are written in the form φ2 via µ, for

φ2 ∈ SenINS2(µ
Sign(Σ)).

For each σ : Σ → Σ ′ in Sign, Sen(σ) : Sen(Σ) → Sen(Σ ′) is de-

fined as SenINS1(σ) on Σ-sentences in SenINS1(Σ) ⊆ Sen(Σ), and

40

2.5 summary

then for any φ2 via µ ∈ Sen(Σ), where φ2 ∈ SenINS2(µ
Sign(Σ)),

Sen(σ)(φ2 via µ) = µSign(σ)(φ2).

INS1 plus INS2 via µ has the same models as INS1: Mod = ModINS1 .

For each signature Σ ∈ |Sign|, the satisfaction relation |=Σ is defined

to coincide with |=INS1,Σ for Σ-sentences in SenINS1(Σ), while for

φ2 ∈ SenINS2(µ
Sign(Σ)) and M ∈ |Mod(Σ)|

M |=Σ φ2viaµ⇔ µMod
Σ (M) |=INS2,µSign(Σ)

φ2

In this scenario, the sentences of INS1 and INS2 do not need to be re-

lated. Thus, reinterpreting the sentences of INS2 using this construction

may increase the specification power of INS1 [100].

Example: Using µ : FOPEQ→ EQ as outlined above we can construct

the duplex institution FOPEQ plus EQ via µ which allows equations to

be used to specify properties of first-order structures [100]. This is not

a very interesting construction as EQ-sentences are already present in

FOPEQ. However, EQ might be equipped with powerful term rewrit-

ing and inductive reasoning tools which are not present in FOPEQ and

so the duplex institution provides us with more expressivity than the

institutions in isolation.

Institutions may also be combined (flattened) using the Grothendieck

construction. This was the approach that was taken in CafeOBJ spec-

ification language (a successor of the OBJ specification language) [26,

28, 29]. The Grothendieck construction establishes a “disjoint sum” of

a number of institutions and introduces theory morphisms across the

institution embeddings.

2.5 summary

In this chapter we have examined the literature relevant to this thesis

and introduced the mathematical prerequisites for our work. We will

41

2.5 summary

refer to these definitions in later chapters and expand upon them where

necessary.

The literature for Event-B indicates that a more unified approach is

required for modular specifications and supporting interoperability be-

tween Event-B and other languages. It is our thesis that the theory of

institutions is sufficient to provide the necessary constructs to support

a unified approach, in a formally defined way. Our first step is to define

an institution for Event-B as presented in Chapter 3.

42

Part I

D E F I N I N G A S E M A N T I C S

“When you speak a new language you must see if you can translate

all of the poetry of your old language into the new one.”

– Dana Scott

3
D E F I N I N G EVT - A N I N S T I T U T I O N F O R E V E N T- B

In this chapter we present the formal definition of an institution for Event-B,

called EVT. This chapter provides our theoretical foundations for the work that

we present in the chapters that follow. There are two basic languages within

the Event-B language. The first one is the Event-B mathematical language

(propositional/predicate logic, set-theory and arithmetic) and the second is the

Event-B modelling language [3]. To represent the latter, we propose a new

custom solution; for the former, however, we can use FOPEQ, the institution

of first-order predicate logic with equality that was presented in Section 2.3.3.

Thus, our institution for Event-B is built on FOPEQ. The work contained in

this chapter was originally published in [40] and [41].

3.1 introducing EVT

This chapter introduces the EVT institution and it is structured as fol-

lows. First we present SignEVT, SenEVT, ModEVT and the satisfaction re-

lation, |=EVT. We then prove that EVT preserves the institution-theoretic

satisfaction condition, discuss the pragmatics of specification-building

in EVT and define an institution comorphism from FOPEQ to EVT. We

show that EVT exhibits good behaviour with respect to modularisation

by presenting pushouts and amalgamation in EVT. We finish with an

illustrative example of writing modular specifications in the EVT insti-

tution.

44

3.2 SignEVT , the category of EVT-signatures

3.2 SignEVT , the category of EVT-signatures

Signatures describe the vocabulary that specifications written in a par-

ticular institution can have. Here, we define what it means to be an

EVT-signature (Definition 31) and an EVT-signature morphism (Defini-

tion 32). We show that SignEVT is indeed a category (Lemma 31) which

is a necessary requirement for the definition of the EVT institution.

Definition 31 (EVT-Signature). A signature in EVT is a five-tuple

ΣEVT = 〈S,Ω,Π, E, V〉 where 〈S,Ω,Π〉 is a standard FOPEQ-signature as

outlined in Section 2.3.3, E is a set of events, i.e. of pairs 〈event name, status〉

where status belongs to the poset {ordinary < anticipated < convergent},

and V is a set of sorted variables. We assume that every signature has

an initial event, called Init, whose status is always ordinary.

Notation: We write Σ in place of ΣEVT when describing a signature over

our institution for Event-B. For signatures over institutions other than

EVT we will use the subscript notation where necessary; e.g. a signature

over FOPEQ is denoted by ΣFOPEQ. For a given signature Σ, we access

its individual components using a dot-notation, e.g. Σ.V for the set V in

the tuple Σ. We use the abbreviation Init to refer to the Initialisation

event in Event-B.

Definition 32 (EVT-Signature Morphism). A signature morphism σ :

Σ→ Σ ′ is a five-tuple containing σS, σΩ, σΠ, σE and σV. Here σS, σΩ, σΠ

are the mappings taken from the corresponding signature morphism in

FOPEQ, as follows

• σS : Σ.S→ Σ ′.S is a function mapping sort names to sort names.

• σΩ : Σ.Ω → Σ ′.Ω is a family of functions mapping operation

names in Σ.Ω, respecting the arities and result sorts.

• σΠ : Σ.Π → Σ ′.Π is a family of functions mapping the predicate

names in Σ.Π, respecting the arities.

45

3.2 SignEVT , the category of EVT-signatures

and

• σE : Σ.E→ Σ ′.E is a function such that for any mapping σE〈e, st〉 =

〈e ′, st ′〉 where st 6 st ′; in addition, σE preserves the initial event:

that is, σE〈Init, ordinary〉 = 〈Init, ordinary〉 and preserves the

status ordering given by the poset {ordinary < anticipated <

convergent}.

• σV : Σ.V → Σ ′.V is a sort-preserving function on sets of variable

names. The set of variable names V contains elements of the form

v : s where v is the variable name and s is its sort. We apply a

signature morphism σ to these elements as follows:

σ(v : s) = σV(v) : σS(s)

where σV is a renaming function and σS is the sort mapping as

described above.

Lemma 31. EVT-signatures and signature morphisms define a category SignEVT.

The objects are signatures and the arrows are signature morphisms.

Proof. Let Σ = 〈S,Ω,Π, E, V〉 be an EVT-signature where 〈S,Ω,Π〉 is a

signature over FOPEQ, ΣFOPEQ, the institution for first-order predicate

logic with equality [100]. E is a set of 〈event name, status〉 pairs and V is

a set of sort-indexed variable names.

Recall from Definition 24 that, in a category, morphisms can be com-

posed, are associative and identity morphisms exist. We show that

SignEVT preserves these three properties:

(a) Composition of EVT-signature morphisms:

EVT-signature morphisms can be composed, the composition of

σS,σΩ and σΠ is inherited from FOPEQ. Therefore, we only exam-

ine the composition of σE and σV.

σE: Event names do not have a sort or arity, so the only restric-

tions are (1) on pairs of the form 〈Init, ordinary〉 and (2) that

46

3.2 SignEVT , the category of EVT-signatures

the ordering in the status poset is preserved. In both of these

cases the composition holds for σE.

σV: Variable names are sort-indexed so σV utilises σS on these

sorts.

σ2(σ1(v : s)) = σ2((σ1V(v) : σ1S(s)))

= σ2V(σ1V(v)) : σ2S(σ1S(s))

Let σ1 : Σ1 → Σ2 and σ2 : Σ2 → Σ3, then we prove that σ2 ◦ σ1 is a

morphism in the category of EVT-signatures.

– For all 〈e1, st1〉 ∈ Σ1.E1, σ1(〈e1, st1〉) ∈ Σ2.E2 and for all 〈e2, st2〉 ∈

Σ2.E2, σ2(〈e2, st2〉) ∈ Σ3.E3. Therefore σ2(σ1(〈e1, st1〉)) ∈ Σ3.E3
so

∀〈e1, st1〉 ∈ Σ1.E1 ⇒ σ2 ◦ σ1(〈e1, st1〉) ∈ Σ3.E3

– For all (v1 : s1) ∈ Σ1.V1, σ1((v1 : s1)) ∈ Σ2.V2 and for all

(v2 : s2) ∈ Σ2.V2, σ2((v2 : s2)) ∈ Σ3.V3. Therefore σ2(σ1((v1 :

s1))) ∈ Σ3.V3 so

∀(v1 : s1) ∈ Σ1.V1 ⇒ σ2 ◦ σ1((v1 : s1)) ∈ Σ3.V3

Therefore, EVT-signature morphisms can be composed.

(b) Composition of EVT-signature morphisms is associative:

(σ3 ◦ σ2) ◦ σ1 = σ3 ◦ (σ2 ◦ σ1)

For 〈e, st〉 ∈ Σ.E:

σ2 ◦ σ1(〈e, st〉) = σ2(σ1(〈e, st〉))

Then, by definition of composition

σ3 ◦ (σ2 ◦ σ1)(〈e, st〉) = σ3(σ2(σ1(〈e, st〉)))

= σ3 ◦ σ2 ◦ (σ1(〈e, st〉))

= (σ3 ◦ σ2) ◦ σ1(〈e, st〉)

47

3.3 the functor SenEVT , yielding EVT-sentences

Similarly, for (v : s) ∈ Σ.V,

σ3 ◦ (σ2 ◦ σ1)((v : s)) = (σ3 ◦ σ2) ◦ σ1((v : s))

Therefore, the composition of EVT-signature morphisms is asso-

ciative.

(c) Identity morphisms for EVT-signatures:

For any EVT-signature Σ, there exists an identity signature mor-

phism idΣ : Σ → Σ. idE and idV are such that idE(〈e, st〉) = 〈e, st〉

and idV((v : s)) = (v : s). This morphism satisfies the following

signature morphism condition

〈e, st〉 ∈ Σ.E⇒ idE(〈e, st〉) ∈ Σ.E ∧ (v : s) ∈ Σ.V ⇒ idV(v : s) ∈ Σ.V

We have thus shown that SignEVT forms a category as instructed by the

definition of an institution (Definition 28).

In this section, we have defined the category of EVT-signatures, SignEVT.

Next, we define the functor SenEVT that yields EVT-sentences.

3.3 the functor SenEVT , yielding EVT-sentences

The second component of an institution is a functor called Sen that

generates a set of sentences over a particular signature (Definition 28).

Here, we define what is meant by a ΣEVT-Sentence (Definition 33 and

we prove that SenEVT is indeed a functor.

Definition 33 (ΣEVT-Sentence). There are two kinds of sentence over

EVT:

〈e,φ(x, x′)〉: This kind of sentence is used to represent individual events.

Here, e is an event name in the domain of Σ.E and φ(x, x′) is

an open FOPEQ-formula over the variables x from Σ.V and the

primed versions, x′, of the variables.

48

3.3 the functor SenEVT , yielding EVT-sentences

1 MACHINE m refines a SEES ctx
2 VARIABLES x
3 INVARIANTS I(x)
4 VARIANT n(x)
5 EVENTS
6 Initialisation ordinary
7 then act-name: BA(x′)
8 Event e =̂ status
9 any p

10 when guard-name: G(x, p)
11 with witness-name: W(x, p)
12 then act-name: BA(x, p, x′)

13

.

.

.
14 END

〈inv, I(x) ∧ I(x′)〉
{〈e, n(x)′ 6 n(x)〉, 〈e, n(x)′ 6 n(x)〉}

〈 Init, BA(x′)〉

〈e, ∃ p · G(x, p) ∧ W(x, p) ∧ BA(x, p, x′)〉

Figure 3.1: The elements of an Event-B machine as presented in Rodin

and their corresponding EVT-sentences.

〈inv,φ(x, x′)〉 This kind of sentence is used to represent invariants. Here,

inv is the tag used for sentences that define invariants and φ(x, x′)

is as above.

In the Rodin Platform, Event-B machines are presented (syntactically

sugared) as can be seen in Figure 3.1. The set of variables in a machine

is denoted by x (line 2) and the invariants are denoted by I(x) on line 3.

The EVT-signature derived from this machine would look as follows

Σ = 〈S,Ω,Π, {〈Initialisation, ordinary〉, 〈e, status〉, . . .}, {x}〉

where the FOPEQ-component of the signature, 〈S,Ω,Π〉, is drawn from

the “seen” context(s) on line 1. The variant expression, denoted by n(x)

on line 4, is used for proving termination properties. As described in

Section 2.1.1, events that have a status of anticipated or convergent

must not increase and strictly decrease the variant expression respec-

tively [3]. Each machine has an Initialisation event (lines 6–7) whose

action is interpreted as a predicate BA(x). Events can have parameter(s)

as given by the list of identifiers p on line 9. G(x, p) and W(x, p) are

predicates that represent the guard(s) and witness(es) respectively over

the variables and parameter(s) (lines 10–11). Actions are interpreted

as before-after predicates i.e. x := x + 1 is interpreted as x′ = x + 1.

49

3.3 the functor SenEVT , yielding EVT-sentences

Thus, the predicate BA(x, p, x′) on line 12 represents the action(s) over

the parameter(s) p and the sets of variables x and x′.

Formulae written in the mathematical language (such as the axioms

that may appear in contexts) are interpreted as sentences over FOPEQ.

We can include these in specifications over EVT using the comorphism

defined in Section 3.6. We represent the Event-B invariant, variant and

event predicates as sentences over EVT. These are illustrated alongside

the Event-B predicates that they correspond to in Figure 3.1.

Invariants: For each Event-B invariant, I(x), we form the open FOPEQ-

sentence I(x) ∧ I(x′). Each invariant is paired with the inv invari-

ant tag. Thus, we form the EVT invariant sentence 〈inv, I(x) ∧

I(x′)〉. When we define the EVT-satisfaction relation, |=EVT, de-

scribed Definition 37, we show how these sentences must hold for

all events in the signature.

Variants: Firstly, we assume the existence of a suitable type for variant

expressions and the usual interpretation of the predicates < and 6

over the integers in the signature. The variant expression applies

to specific events, so we pair it with an event name in order to

meaningfully evaluate it. This expression can be translated into

an open FOPEQ-term, which we denote by n(x), and we use this

to construct a formula based on the status of the event(s) in the

signature Σ.

– For each 〈e, anticipated〉 ∈ Σ.E we form the EVT-sentence

〈e, n(x′) 6 n(x)〉

– For each 〈e, convergent〉 ∈ Σ.E we form the EVT-sentence

〈e, n(x′) < n(x)〉

Events: Event guard(s) and witnesses are also labelled predicates that

can be translated into open FOPEQ-formulae over the variables x

50

3.3 the functor SenEVT , yielding EVT-sentences

1 〈 inv, cars go ∈ BOOL ∧ cars go′ ∈ BOOL 〉
2 〈 inv, peds go ∈ BOOL ∧ peds go′ ∈ BOOL 〉
3 〈 inv, ¬ (peds go = true ∧ cars go = true) ∧ ¬ (peds go′ = true ∧ cars go′ = true)〉
4 〈 Init, cars go′ = false ∧ peds go′ = false 〉
5 〈 set peds go, cars go = false ∧ peds go′ = true 〉
6 〈 set peds stop, peds go′ = false 〉
7 〈 set cars go, peds go = false ∧ cars go′ = true 〉
8 〈 set cars stop, cars go′ = false 〉

Figure 3.2: These are the EVT-sentences corresponding to the abstract

Event-B traffic light system as illustrated on lines 1–21 of

Figure 2.1.

in V and parameters p. These are denoted by G(x, p) and W(x, p)

respectively. In Event-B, actions are interpreted as before-after

predicates, thus they can be translated into open FOPEQ-formulae

denoted by BA(x, p, x′). Thus for each event we form the formula

φ(x, x′) = ∃ p ·G(x, p) ∧ W(x, p) ∧ BA(x, p, x′)

where p are the event parameters. This generates an EVT-sentence

of the form 〈e,φ(x, x′)〉. The Init event, which is an Event-B sen-

tence over only the after variables denoted by x′, is a special case.

In this case, we form the EVT-sentence 〈Init,φ(x′)〉 where φ(x′)

is a predicate over the after values of the variables as assigned by

the Init event.

Figure 3.2 contains the EVT-sentences corresponding to the abstract

Event-B machine on lines 1–21 of Figure 2.1.

Lemma 32. There is a functor SenEVT : SignEVT → Set generating for each

EVT-signature Σ a set of EVT-sentences (objects in the category Set) and

for each EVT-signature morphism σ : Σ1 → Σ2 (morphisms in the category

SignEVT) a function Sen(σ) : Sen(Σ1)→ Sen(Σ2) (morphisms in the category

Set) translating EVT-sentences.

Proof. SenEVT is a functor therefore it is necessary to map the EVT-

signature morphisms to corresponding functions over sentences. The

51

3.3 the functor SenEVT , yielding EVT-sentences

functor maps morphisms to sentence morphisms respecting sort, arity

and Init events. The image of a signature Σi (i ∈ N) in SignEVT is an

object Sen(Σi) in the category Set. By the definition of the extension of

the signature morphism to sentences [100], the translation of the object

Sen(Σ1) coincides with an object in Sen(Σ2) with sort, operation, pred-

icate, event and variable names translated with respect to the signature

morphism σ : Σ1 → Σ2. Thus, the image of a morphism in SignEVT is a

function Sen(σ) : Sen(Σ1)→ Sen(Σ2) in the category Set.

Then we prove that Sen preserves the composition of EVT-signature

morphisms and identities as follows.

(a) Composition of EVT-sentence morphisms:

Sen(σ2 ◦ σ1) = Sen(σ2) ◦ Sen(σ1)

Let Σi (i = 1..4) be EVT-signatures and let σ1 : Σ1 → Σ2 and σ2 :

Σ3 → Σ4 be EVT-signature morphisms. Given an EVT-sentence of

the form 〈e,φ(x, x′)〉, then by expanding each side of the follow-

ing equivalence, since signature morphisms can be composed, we

show that composition is preserved.

Sen(σ2 ◦ σ1)(〈e,φ(x, x′)〉) = Sen(σ2) ◦ Sen(σ1)(〈e,φ(x, x′)〉)

〈σ2 ◦ σ1(e),σ2 ◦ σ1(φ(x, x′))〉 = Sen(σ2)(〈σ1(e),σ1(φ(x, x′))〉)

〈σ2(σ1(e)),σ2(σ1(φ(x, x′)))〉 = 〈σ2(σ1(e)),σ2(σ1(φ(x, x′)))〉

Thus, composition is preserved.

(b) Preservation of identities:

Let idΣ1 : Σ1 → Σ1 be an identity EVT-signature morphism as

defined in Lemma 31. Since EVT-signature morphisms already

preserve identity and Sen(idΣ1) is the application of the identity

signature morphisms to every element of the sentence, then the

52

3.4 the functor ModEVT , yielding EVT-models

identities are preserved. We can illustrate this as follows. Given a

Σ1-sentence 〈e,φ(x, x′)〉,

Sen(idΣ1(〈e,φ(x, x′)〉)

= 〈idΣ1(e), idΣ1(φ(x, x′))〉

= 〈e,φ(x, x′)〉

and so, identities are preserved.

Thus SenEVT is a functor.

In this section, we have defined what is meant by an EVT-sentence.

Next, we define EVT-models and the ModEVT functor.

3.4 the functor ModEVT , yielding EVT-models

Our construction of EVT-models is based on Event-B mathematical mod-

els as described by Abrial [3, Ch. 14]. In these models the state is rep-

resented as a sequence of variable-values and models are defined over

before and after states. We interpret these states as sets of variable-to-

value mappings in our definition of EVT-models and so we define a

Σ-state of an algebra A in Definition 34.

Definition 34 (Σ-StateA). For any given EVT-signature Σ we define a

Σ-state of an algebra A as a set of (sort appropriate) variable-to-value

mappings whose domain is the set of sort-indexed variable names Σ.V.

We define the set StateA as the set of all such Σ-states. By “sort appro-

priate” we mean that for any variable x of sort s in V, the corresponding

value for x should be drawn from |A|s, the carrier set of s given by a

FOPEQ-model A.

Definition 35 (ΣEVT-Model). Given Σ = 〈S,Ω,Π, E, V〉, ModEVT(Σ) pro-

vides a category of EVT-models, where an EVT-model over Σ is a tuple

〈A, L, R〉 where

53

3.4 the functor ModEVT , yielding EVT-models

1 Event e =̂
2 when grd1: x<2
3 then act1: x := x + 1
4 act2: y := false

Figure 3.3: An example of an Event-B event, e, with natural number

variable x and boolean variable y. When x > 2, the event

increments the value of x and toggles y to false.

• A is a ΣFOPEQ-model.

• L ⊆ StateA is the non-empty initialising set that provides the states

after the Init event. We note that trivial models are excluded as

the initialising set L is never empty. We can see this because even

in the extreme cases where there are no predicates or variables

in the Init event, L is the singleton containing the empty map

(L = {{}}).

• For every event name e ∈ dom(E), other than Init, we define R.e ⊆

StateA×StateA where for each pair of states 〈s, s′〉 in R.e, s provides

values for the variables x in V, and s′ provides values for their

primed versions x′. Then R = {R.e | e ∈ dom(E) and e 6= Init}.

Intuitively, a model over Σ maps every event name e in (Σ.E) to a

set of variable-to-value mappings over the carriers corresponding to the

sorts of each of the variables x ∈ Σ.V and their primed versions x′.
For example, given the event e in Figure 3.3, with natural number

variable x and boolean variable y we construct the variable-to-value

mappings:

Re =



{x 7→ 0, y 7→ false, x′ 7→ 1, y′ 7→ false},

{x 7→ 0, y 7→ true, x′ 7→ 1, y′ 7→ false},

{x 7→ 1, y 7→ false, x′ 7→ 2, y′ 7→ false},

{x 7→ 1, y 7→ true, x′ 7→ 2, y′ 7→ false}



54

3.4 the functor ModEVT , yielding EVT-models

The notation used in this example is interpreted as variable name 7→ value

which is a data state where the value is drawn from the carrier set cor-

responding to the sort of the variable name given in Σ.V.

Thus we have defined what is meant by an EVT-model.

In Lemma 33, we prove that ModEVT(Σ) forms a category for a given

EVT-signature Σ.

Lemma 33. For any EVT-signature Σ there is a category of EVT-models

ModEVT(Σ) where the objects in the category are EVT-models and the arrows

are EVT-model morphisms.

Proof. We begin by describing EVT-model morphisms and then prove

that composition and identities are preserved.

In FOPEQ a model morphism h : A1 → A2 is a family of functions

h = 〈hs : |A1|s → |A2|s〉s∈S which respects the sorts and arities of the

operations and predicates. Recall from Definition 35 that EVT-models

have the form 〈A, L, R〉, therefore EVT-model morphisms are given by

extending the corresponding FOPEQ-model morphisms for the A com-

ponent of the model to the initialising set L and the relations in R.

Thus for each EVT-model morphism µ : 〈A1, L1, R1〉 → 〈A2, L2, R2〉

there is an underlying FOPEQ-model morphism h : A1 → A2, and we

extend this to the states in the set L1 and in the relation R1. That is, for

any element

{x1 7→ a1, ..., xn 7→ an, x1′ 7→ a1′, ..., xn′ 7→ an′} ∈ R1.e

in R1 there is

{x1 7→ h(a1), ..., xn 7→ h(an), x1′ 7→ h(a1′), ..., xn′ 7→ h(an′)} ∈ R2.e

in R2 where x1, . . . , xn, x1′, . . . , xn′ are variable names and their primed

versions drawn from V. A similar construction follows for L1. The com-

position of model morphisms, their associativity and identity derives

from that of FOPEQ.

55

3.4 the functor ModEVT , yielding EVT-models

(a) Composition of EVT-model morphisms:

Let Mi = 〈Ai, Li, Ri〉 be a model and hi : Mi → Mi+1 be an EVT-

model morphism where i ∈N. We can now show that the compo-

sition of EVT-model morphisms is associative as follows:

(h3 ◦ h2) ◦ h1 = h3 ◦ (h2 ◦ h1)

(h3 ◦ h2)(h1(M1)) = h3 ◦ (h2(h1(M1)))

(h3 ◦ h2)(M2) = h3 ◦ (h2(M2))

h3(h2(M2)) = h3(h2(M2))

h3(M3) = h3(M3)

M4 = M4

(b) Identity morphism for EVT-models:

For any EVT-model Mi there exists an identity model morphism

hid : Mi →Mi. If Mi = 〈Ai, Li, Ri〉 then hid(Mi) = 〈Ai, Li, Ri〉

Thus ModEVT(Σ) forms a category.

Model reducts are central to the definition of an institution as out-

lined in Section 2.3.2 and in Definition 36, we define the EVT-model

reduct. Then, in Lemma 34, we prove that the EVT-model reduct is a

functor.

Definition 36 (EVT-model reduct). The reduct of an EVT-model M =

〈A, L, R〉 along an EVT-signature morphism σ : Σ→ Σ ′ is given by M|σ =

〈A|σ, L|σ, R|σ〉. Here A|σ is the reduct of the FOPEQ-component of the

EVT-model along the FOPEQ-components of σ. L|σ and R|σ are based

on the reduction of the states of A along σ, i.e. for every Σ ′-state s of

A, that is for every sorted map s : Σ ′.V → |A|, s|σ is the map Σ ′.V → |A|

given by the composition σV; s. This extends in the usual manner from

states to sets of states and to relations on states.

Lemma 34. For each EVT-signature morphism σ : Σ1 → Σ2 the EVT-model

reduct is a functor Mod(σ) from Σ2-models to Σ1-models.

56

3.4 the functor ModEVT , yielding EVT-models

Recall that each Σ-StateA is a set of variable-to-value mappings of the

form

{x1 7→ a1, . . . , xn 7→ an}

where x1, . . . , xn ∈ Σ.V (Definition 34).

Proof. Let M2 = 〈A2, L2, R2〉 be a Σ2-model. Then the reduct M2|σ col-

lapses the EVT-model to only contain signature items supported by Σ1

and consists of the tuple M2|σ = 〈A2|σ, L2|σ, R2|σ〉 such that

• A2|σ is the reduct of the FOPEQ-component of the EVT-model

along the FOPEQ-components of σ : Σ→ Σ ′.

• L2|σ and R2|σ are based on the reduction of the states of A2 along

σ. In particular, given e ∈ dom(E1) and e 6= Init and R2.σ(e) ∈ R2

R2.σ(e) = {s1, ..., sm}

where each si is a Σ2-stateA2 (1 6 i 6 m) is of the form

{σ(x1) 7→ a1, ...,σ(xn) 7→ an,σ(x1′) 7→ a1′, ...,σ(xn′) 7→ an′}

with x1, ..., xn ∈ Σ.V and x1′, ..., xn′ ∈ Σ.V′.

Then for each e ∈ dom(E1), e 6= Init and R2|σ.e ∈ R2|σ there is

R2|σ.e = {s1|σ, ..., sm|σ}

where each si|σ (1 6 i 6 m) is of the form

{x1 7→ a1, ..., xn 7→ an, x1′ 7→ a1′, ..., xn′ 7→ an′}

In order to prove that the model reduct is a functor, we show that it

preserves composition and identites as follows:

(a) Preservation of composition for EVT-model reducts:

Our objective here is to show that the reduct of a composition

of two EVT-model morphisms is equal to the composition of the

57

3.4 the functor ModEVT , yielding EVT-models

redicts of those EVT-model morphisms. Given EVT-model mor-

phisms h1 : M1 →M2 and h2 : M2 →M3, then we show that

(h2 ◦ h1)|σ = h2|σ ◦ h1|σ

for some EVT-signature morphism σ : Σ → Σ ′. Given an EVT-

model of the form M1 = 〈A, L, R〉 over Σ, then for any R.e ∈ R, as

outlined above, of the form

{x1 7→ a1, . . . , x′n 7→ a′n}e

Then (h2 ◦ h1) |σ is defined as

(h2 ◦ h1){σ(x1) 7→ a1, . . . ,σ(x′n) 7→ a′n}σ(e)

This is equal to

h2({σ(x1) 7→ h1(a1), . . . ,σ(x′n) 7→ h1(a′n)}σ(e)

Since EVT-model morphisms can be composed, this is thus equal

to h2|σ ◦ h1|σ.

(b) Preservation of identities for EVT-model reducts:

The reduct of the identity is the identity. Let idM2 be an identity

Σ2-morphism then idM2 |σ is an identity Σ1-morphism h1 defined

by h1(R.e) = idM2 |σ(R.e) = R.e for any R.e ∈ R and e is an event

other than Init.

For the components belonging to A these proofs follow the corre-

sponding proofs in FOPEQ.

Lemma 35. There is a functor ModEVT yielding a category Mod(Σ) of EVT-

models for each EVT-signature Σ, and for each EVT-signature morphism σ :

Σ1 → Σ2 a functor Mod(σ) from Σ2-models to Σ1-models.

Proof. For each σ : Σ1 → Σ2 in SignEVT there is an arrow in Signop
EVT

going in the opposite direction. By Lemma 4, the image of this arrow

58

3.4 the functor ModEVT , yielding EVT-models

in Signop
EVT is Mod(σ) : Mod(Σ2) → Mod(Σ1) in Cat. By Lemma 3, the

image of a signature in SignEVT is an object Mod(Σ) in Cat. Therefore,

domain and codomain of the image of an arrow are the images of the

domain and codomain respectively.

(a) Preservation of composition:

Mod(σ2 ◦ σ1) = Mod(σ2) ◦Mod(σ1)

Let σ1 : Σ1 → Σ2 and σ2 : Σ2 → Σ3 be EVT-signature morphisms

and let Mi = 〈Ai, Li, Ri〉 be an EVT-model over Σi and let hi be a

Σi-model morphism with i ∈ {1, 2, 3}.

– M3|σ2◦σ1 = (M3|σ2)|σ1

By definition of reduct

M3|σ2 = 〈A3, L3, R3〉|σ2 = 〈A2, L2, R2〉 = M2 .

Then

(M3|σ2)|σ1 = M2|σ1 = 〈A2, L2, R2〉|σ1 = 〈A1, L1, R1〉 = M1.

By composition of signature morphisms σ2 ◦ σ1 : Σ1 → Σ3,

then

M3|σ2◦σ1 = 〈A3, L3, R3〉|σ2◦σ1 = 〈A1, L1, R1〉 = M1

Therefore M3|σ2◦σ1 = (M3|σ2)|σ1

– h3|σ2◦σ1 = (h3|σ2)|σ1
Proof similar to above.

(b) Preservation of identities:

Let idΣ1 be an identity signature morphism as defined in Lemma

31. Since EVT-signature morphisms already preserve identity and

Mod(idΣ1) is the application of the identity signature morphisms

to every part of the EVT-model, the identities are preserved.

59

3.5 the satisfaction relation for EVT

In this section, we defined EVT-models, model reducts and the ModEVT

functor. Next, we describe the satisfaction relation, |=EVT, in EVT and

prove that EVT is a valid institution.

3.5 the satisfaction relation for EVT

All institutions are equipped with a satisfation relation to evaluate if a

particular model satisfies a sentence. Here, we define the satisfaction

relation for EVT. In order to define the satisfaction relation for EVT,

we describe an embedding from EVT-signatures and models to FOPEQ-

signatures and models.

Given an EVT-signature Σ = 〈S,Ω,Π, E, V〉 we form the following two

FOPEQ-signatures:

• Σ
(V,V′)
FOPEQ = 〈S,Ω∪V ∪V′,Π〉 where V and V′ are the variables and

their primed versions, respectively, that are drawn from the EVT-

signature, and represented as 0-ary operators with unchanged

sort. The intuition here is that the set of variable-to-value map-

pings for the free variables in an EVT-signature Σ are represented

by adding a distinguished 0-ary operation symbol to the corre-

sponding FOPEQ-signature for each of the variables x ∈ V and

their primed versions.

• Similarly, for the initial state and its variables, we construct the

signature Σ(V′)FOPEQ = 〈S,Ω∪V′,Π〉.

Given the EVT Σ-model 〈A, L, R〉, we construct the FOPEQ-models:

• For every pair of states 〈s, s′〉, we form the Σ(V,V′)
FOPEQ-model expan-

sion A(s,s′), which is the FOPEQ-component A of the EVT-model,

with s and s′ added as interpretations for the new operators that

correspond to the variables from V and V′ respectively.

• For each initial state s′ ∈ L we construct the Σ(V′)FOPEQ-model expan-

sion A(s′) analogously.

60

3.5 the satisfaction relation for EVT

For any EVT-sentence over Σ of the form 〈e,φ(x, x′)〉 or 〈inv,φ(x, x′)〉,

we create a corresponding FOPEQ-formula by replacing the free vari-

ables with their corresponding operator symbols. We write this (closed)

formula as φ(x, x ′).

Given these FOPEQ-signatures and models, we now define the satis-

faction relation for EVT in Definition 37.

Definition 37 (Satisfaction Relation). Since there are two kinds of EVT-

sentence, we define two kinds of satisfaction relation in EVT.

Satisfaction Relation 1: For any EVT-model 〈A, L, R〉 and EVT-sentence

〈e,φ(x, x′)〉, where e is an event name other than Init, we define:

〈A, L, R〉 |=Σ 〈e,φ(x, x′)〉 ⇔ ∀〈s, s′〉 ∈ R.e ·A(s,s′) |=
Σ
(V,V′)
FOPEQ

φ(x, x ′)

Similarly, we evaluate the satisfaction relation of EVT-sentences of

the form 〈Init,φ(x′)〉 as follows:

〈A, L, R〉 |=Σ 〈Init,φ(x′)〉 ⇔ ∀ s′ ∈ L ·A(s′) |=
Σ
(V′)
FOPEQ

φ(x ′)

Satisfaction Relation 2: For any EVT-model 〈A, L, R〉 and EVT-sentence

〈inv,φ(x, x′)〉, we define:

〈A, L, R〉 |=Σ 〈inv,φ(x, x′)〉

⇔

For every non-Init event, e,

〈∀ s, s′〉 ∈ R.e ·A(s,s′) |=
Σ
(V,V′)
FOPEQ

φ(x, x ′)

∧ ∀ s′ ∈ L ·A(s′) |=
Σ
(V′)
FOPEQ

φ(x, x ′)

Theorem 31 (Satisfaction Condition). Given EVT signatures Σ1 and Σ2, a

signature morphism σ : Σ1 → Σ2, a Σ2-model M2 and a Σ1-sentence ψ1, the

following satisfaction condition holds:

Mod(σ)(M2) |=EVTΣ1
ψ1 ⇔ M2 |=EVTΣ2

Sen(σ)(ψ1)

61

3.5 the satisfaction relation for EVT

Proof. We must prove this for both kinds of EVT-sentence (〈e,φ(x, x′)〉

and 〈inv,φ(x, x′)〉) as defined in Defintion 33, with the satisfaction re-

lation, |=EVT, as defined in Definition 37. Let M2 be the EVT-model

〈A2, L2, R2〉, then,

• Let ψ1 be the sentence 〈e,φ(x, x′)〉, then the satisfaction condition

is equivalent to

∀〈s, s′〉 ∈ R2|σ.e · (A2|σ)(s,s′)|σ |=FOPEQ
Σ
(V1,V1′)
FOPEQ

φ(x, x ′)

⇔ ∀〈s, s′〉 ∈ R2.σE(e) ·A
(s,s′)
2 |=FOPEQ

Σ
(V2,V2′)
FOPEQ

Sen(σ)(φ(x, x ′))

Here, validity follows from the validity of satisfaction in FOPEQ.

We prove the result for initial events in the same way.

• Let ψ1 the sentence 〈inv,φ(x, x′)〉, then the satisfaction condition

is equivalent to

∀ e ∈dom(Σ2 |σ .E) ∧ e 6= Init⇒

∀〈s, s′〉 ∈ R2 |σ .e · (A2 |σ)(s,s′) |σ|=FOPEQ
Σ
(V1,V1′)
FOPEQ

φ(x, x ′)

∧ ∀ s′ ∈ L2|σ·(A2|σ)(s′)|σ) |=
Σ
(V1′)
FOPEQ

φ(x, x ′)

⇔

∀σ(e) ∈ dom(Σ2.E) ∧ e 6= Init⇒

∀〈s, s′〉 ∈ R2.σE(e) ·A
(s,s′)
2 |=FOPEQ

Σ
(V2,V2′)
FOPEQ

Sen(σ)(φ(x, x ′))

∧ ∀ s′ ∈ L2 ·A
(s′)
2 |=

Σ
(V2′)
FOPEQ

Sen(σ)(φ(x, x ′))

Again, the validity follows from the validity of satisfaction in

FOPEQ.

In both cases, validity follows from that of FOPEQ and thus EVT

preserves the satisfaction condition required of an institution.

62

3.6 relating FOPEQ and EVT

In this section we have presented the satisfaction relation in EVT and

showed that EVT preserves the axiomatic property of an institution (sat-

isfaction condition in Theorem 31). As the satisfaction relation in EVT

(Definition 37) relied on a FOPEQ embedding of signatures and models,

we discuss the relationship between FOPEQ and EVT in Section 3.6.

3.6 relating FOPEQ and EVT

Initially, we defined the relationship between FOPEQ and EVT to be

a duplex institution formed from a restricted version of EVT (EVTres)

and FOPEQ where EVTres is the institution EVT but does not contain

any FOPEQ components. As presented in Section 2.4.2 (Definition 216),

duplex institutions are constructed by enriching one institution by the

sentences of another (EVTres is enriched by sentences from FOPEQ) us-

ing an institution semi-morphism [52, 100]. This approach would allow

us to constrain EVTres by FOPEQ and thus facilitate the use of FOPEQ-

sentences in an elegant way. However, duplex institutions are not sup-

ported in Hets [89], and therefore we opt for a comorphism (Definition

214) which embeds the simpler institution FOPEQ into the more com-

plex institution EVT [100].

Definition 38 (The institution comorphism ρ : FOPEQ→ EVT). We

define ρ : FOPEQ → EVT to be an institution comorphism composed

of:

• The functor ρSign : SignFOPEQ → SignEVT which takes as input

a FOPEQ-signature of the form 〈S,Ω,Π〉 and extends it with the

set E = {〈Init ordinary〉} and an empty set of variable names V.

ρSign(σ) works as σ on S, Ω and Π, it is the identity on the Init

event and the empty function on the empty set of variable names.

• The natural transformation ρSen : SenFOPEQ → ρSign; SenEVT which

pairs any closed FOPEQ-sentence (given by φ) with the invariant

63

3.6 relating FOPEQ and EVT

sentence identifier, inv, to form the EVT-sentence 〈inv,φ〉. As there

are no variables in the signature, and φ is any closed formula, we

do not require φ to be over the variables x and x′.

• The natural transformation ρMod : (ρSign)op; ModEVT →ModFOPEQ

is such that for any FOPEQ-signature Σ,

ρMod
Σ (Mod(ρSign(Σ))) = ρMod

Σ (〈A, L,∅〉) = A

Next, we prove that ρ : FOPEQ → EVT meets the axiomatic require-

ments of an institution comorphism as specified in Definition 214.

Theorem 32. The institution comorphism ρ is defined such that for any Σ ∈

|SignFOPEQ|, the translations ρSen
Σ : SenFOPEQ(Σ)→ SenEVT(ρ

Sign(Σ)) and

ρMod
Σ : ModEVT(ρ

Sign(Σ))→ModFOPEQ(Σ) preserve the satisfaction relation.

That is, for any ψ ∈ SenFOPEQ(Σ) and M ′ ∈ |ModEVT(ρ
Sign(Σ))|

ρMod
Σ (M ′) |=FOPEQΣ ψ ⇔ M ′ |=EVT

ρSign(Σ)
ρSen
Σ (ψ) (3.1)

Proof. By Definition 38, M ′ = 〈A, L,∅〉, ρMod
Σ (M ′) = A and ρSen

Σ (ψ) =

〈inv,ψ〉. Therefore, Equation 3.1 becomes

A |=FOPEQΣ ψ ⇔ M ′ |=EVT
ρSign(Σ)

〈inv,ψ〉

Then, by the definition of the satisfaction relation in EVT (Definition

37)

A |=FOPEQΣ ψ ⇔ A(s′) |=FOPEQ
(ρSign(Σ))(V′)

FOPEQ

ψ

We deduce that Σ = (ρSign(Σ))V′
FOPEQ, since there are no variable names

in V′ and thus no new operator symbols are added to the signature. As

there are no variable names in V′, L = {{}}, so we can conclude that

A(s′) = A. Thus the satisfaction condition holds.

As described in Section 2.4.2, institution comorphisms allow us to

translate specifications written over one institutions to specifications

over another.

64

3.7 pushouts and amalgamation

For a Σ-specification written over FOPEQ and institution comorphism

ρ : FOPEQ→ EVT, we can use the specification-building operator

with ρ : SpecFOPEQ(Σ)→ SpecEVT(ρSign(Σ))

to interpret this as a specification over EVT [100]. This results in a spec-

ification with just the Init event and no variables, containing FOPEQ-

sentences that hold in the initial state. This process is used to represent

contexts, specifically their axioms, which are written over FOPEQ as

sentences over EVT.

In cases where a specification is enriched with new events, then the

axioms and invariants should also apply to these new events. Our use of

EVT-sentences that define invariants mediates this as they are applied to

all events in the specification when evaluating the satisfaction condition.

In Section 2.4.1 we outlined that, in order for an institution to correctly

utilise the specification-building operators, we must prove properties

with regard to pushouts (Definition 211) and amalgamation (Definition

212). We prove that EVT meets these requirements in Section 3.7.

3.7 pushouts and amalgamation

We ensure that the institution EVT has good modularity properties by

proving that EVT admits the amalgamation property: all pushouts in

SignEVT exist and every pushout diagram in SignEVT admits weak model

amalgamation [100].

Proposition 31. Pushouts exist in SignEVT.

Proof. Given two EVT-signature morphisms σ1 : Σ → Σ1 and σ2 : Σ →

Σ2 a pushout is a triple (Σ ′,σ ′1,σ
′
2) that satisfies the universal property:

for all triples (Σ ′′,σ ′′1 ,σ ′′2) there exists a unique morphism u : Σ ′ → Σ ′′

such that the diagram on the left below commutes. Our pushout con-

struction follows FOPEQ for the elements that FOPEQ has in common

65

3.7 pushouts and amalgamation

with EVT. In SignEVT the additional elements are E and V as presented

below.

Σ

Σ1

Σ ′

Σ2

Σ ′′

σ1

σ ′1 σ
′
2

σ2

σ ′′1 σ ′′2u

We base our constructions of the pushout in E and V on the pushout in

Set that was defined in Section 2.4.1.

• Set of 〈event name, status〉 pairs E: The set of all event names in

the pushout is the pushout in Set on event names only. Then, the

status of an event in the pushout is the supremum of all event sta-

tuses that are mapped to it, according to the ordering given in Def-

inition 32. Since EVT-signature morphisms map 〈Init,ordinary〉

to 〈Init, ordinary〉 the pushout does likewise. The universality

property for E follows from that of Set. Thus the pushout in E is

given by the formula E1∪̇E2/ ∼ where ∼ is the least equivalence

relation such that

σ ′1 ◦ σ1(〈e, status〉) ∼ σ ′2 ◦ σ2(〈e, status〉)

for 〈e, status〉 ∈ Σ.E.

• Set of sort-indexed variable names V: The set of sort-indexed variable

names in the pushout is the pushout in FOPEQ for the sort compo-

nents and the pushout in Set for the variable names. This is a sim-

ilar construction to the pushout for operation names in FOPEQ as

these also have to follow the sort pushout. Thus, the universality

property for V follows from that of Set and the FOPEQ pushout

66

3.7 pushouts and amalgamation

for sorts.Thus the pushout in V is given by the formula V1∪̇V2/ ∼

where ∼ is the least equivalence relation such that

σ ′1 ◦ σ1(v : s) ∼ σ ′2 ◦ σ2(v : s)

for (v : s) ∈ Σ.V.

In Definition 212 we defined what is meant by the amalgamation

property. In Definition 39 we present the definition of amalgamation

as outlined by Sanella and Tarlecki and use it to structure the proof

of amalgamation in EVT [100]. Both definitions are equivalent but the

latter allows us to format our proof in a more intuitive way.

Definition 39 (Amalgamation). Let INS = 〈Sign, Sen, Mod, 〈|=Σ〉Σ∈|Sign|〉

be an institution. The following diagram in Sign

Σ

Σ1

Σ ′

Σ2

σ1

σ ′1 σ ′2

σ2

admits amalgamation if

• for any two models M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)|, there

exists a unique model M ′ ∈ |Mod(Σ ′)| (amalgamation of M1 and

M2) such that M ′|σ ′1 = M1 and M ′|σ ′2 = M2.

• for any two model morphisms f1 : M11 → M12 in Mod(Σ1) and

f2 : M21 → M22 in Mod(Σ2) such that f1|σ1 = f2|σ2 , there exists a

unique model morphism f ′ : M ′
1 →M ′

2 in Mod(Σ ′) (amalgamation

of f1 and f2) such that f ′|σ ′1 = f1 and f ′|σ ′2 = f2.

The institution INS has the amalgamation property if all pushouts exist

in Sign and every pushout diagram in Sign admits amalgamation [100].

67

3.7 pushouts and amalgamation

Proposition 32. Every pushout diagram in SignEVT admits weak model amal-

gamation.

We decompose this proposition into two further sub-propositions:

Sub-Proposition 321. For M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such that

M1|σ1 = M2|σ2 , there exists an EVT-model (the amalgamation of M1 and M2)

M ′ ∈ |Mod(Σ ′)| such that M ′|σ ′1 = M1 and M ′|σ ′2 = M2.

Proof. Given the EVT-models M ∈ |Mod(Σ)|, M1 ∈ |Mod(Σ1)|, M2 ∈

|Mod(Σ2)| and EVT-signature morphisms σ1 : Σ → Σ1,σ2 : Σ :→ Σ2

in the commutative diagram below.

M ′ = 〈A ′, L ′, R ′〉

M1 = 〈A1, L1, R1〉

M = 〈A, L, R〉

M2 = 〈A2, L2, R2〉

Mod(σ ′1)

Mod(σ1) Mod(σ2)

Mod(σ ′2)

We compute the model amalgamation (following the corresponding

pushout diagram in Sign as illustrated in Proposition 31) M ′ = M1⊗M2

which is of the form 〈A ′, L ′, R ′〉 where A ′ = A1 ⊗ A2 is the FOPEQ-

model amalgamation of A1 and A2. We construct the initialising set

L ′ = L1 ⊗ L2 by amalgamating the initialising sets L1 and L2 to get the

set of all possible combinations of variable mappings, while respecting

the amalgamations induced on variable names via the pushout Σ.V ′.

For example, suppose that the sort-indexed variable x is in Σ.V. Then

we can apply the EVT-signature morphisms σ1 : Σ→ Σ1 and σ2 : Σ→ Σ2

to get σ1(x) = x1 ∈ Σ1.V and σ2(x) = x2 ∈ Σ2.V. From Proposition 31,

we know that the pushout (Σ1.V ∪ Σ2.V)/∼ contains the variable name

x ′ such that σ ′1(x1) = σ ′2(x2) = x ′ ∈ Σ ′.V. We follow this pushout con-

struction in order to construct the corresponding model amalgamation.

A model M ∈ |Mod(Σ)| contains an initialising set L which, in turn, con-

tains maplets of the form x 7→ a where a is a sort-appropriate value for

68

3.7 pushouts and amalgamation

the variable x. In light of the EVT-signature morphisms outlined above,

we know that M1 ∈ |Mod(Σ1)| contains maplets of the form x1 7→ a1

and M2 ∈ |Mod(Σ2)| contains maplets of the form x2 7→ a2 where a1

and a2 are sort-appropriate values for x1 and x2 respectively. Then the

amalgamation M ′ ∈ |Mod(Σ)| has the initialising set L ′ = L1⊗ L2 which

contains all maplets of the form x ′ 7→ a ′ where a ′ is a sort-appropriate

value for x ′ drawn from A ′ (the FOPEQ-amalgamation of A1 and A2).

Note that initialising sets contain sets of variable-to-value mappings for

all of the variables in the V component of their signatures, as such, the

amalgamation contains the above maplets in all possible combinations

with those corresponding to any other variables that may be in the sig-

nature.

We construct the relation R ′ = R1 ⊗ R2, which is the amalgamation

of R1 and R2, in a similar manner. Specifically, starting from any R.e =

{s1, ..., sm} ∈ R where s1, ..., sm are states of the form

{x1 7→ a1, ..., xn′ 7→ an′}

where x1, . . . , xn′ are the variable names (and their primed versions

drawn from Σ.V). We construct the corresponding relation R ′.σ ′(e) in

R ′ so that the diagram in Figure 3.4 commutes.

In Figure 3.4, h ′ = (h1 + h2) is the corresponding function over the

carrier-sets in M ′ obtained from FOPEQ, and σ ′ = (σ ′1 ◦ σ1) + (σ ′2 ◦

σ2) is the mapping for variable and event names obtained from the

corresponding construction in SignEVT.

69

3.7 pushouts and amalgamation

R
′ .σ
′ (

e)
=

{.
..

,{
σ
′ (

x 1
)
7→

h′
(a
1
),
..
.,
σ
′ (

x n
′)
7→

h′
(a

n′
)}

,.
..
}
∈

R
′

R
1
.σ
1
(e
)
=

{.
..

,{
σ
1
(x
1
)
7→

h 1
(a
1
),
..
.,
σ
1
(x

n′
)
7→

h 1
(a

n′
)}

,.
..
}
∈

R
1

R
.e
=

{.
..

,{
x 1
7→

a 1
,.
..

,x
n′
7→

a n
′},
..
.}
∈

R

R
2
.σ
2
(e
)
=

{.
..

,{
σ
2
(x
1
)
7→

h 2
(a
1
),
..
.,
σ
2
(x

n′
)
7→

h 2
(a

n′
)}

,.
..
}
∈

R
2

M
od
(σ
′ 1
)

M
od
(σ
1
)

M
od
(σ
2
)

M
od
(σ
′ 2
)

Fi
gu

re
3
.4

:T
he

co
ns

tr
uc

ti
on

of
R
′
=

R
1
⊗

R
2
,t

he
am

al
ga

m
at

io
n

of
R
1

an
d

R
2
.

70

3.7 pushouts and amalgamation

Sub-Proposition 322. For any two EVT-model morphisms f1 : M11 → M12

in Mod(Σ1) and f2 : M21 → M22 in Mod(Σ2) such that f1|σ1 = f2|σ2 , there

exists an EVT-model morphism (the amalgamation of f1 and f2) called f ′ :

M ′
1 →M ′

2 in Mod(Σ ′), such that f ′|σ ′1 = f1 and f ′|σ ′2 = f2.

Proof. Given the EVT-model morphisms f1 and f2 and their common

reduct f0, we construct f ′ so that the following diagram commutes:

f ′ : M ′
1 →M ′

2

f1 : M11 →M12

f0 : M01 →M02

f2 : M21 →M22

Mod(σ ′1)

Mod(σ1) Mod(σ2)

Mod(σ ′2)

Since each EVT-model has a FOPEQ model as its first component,

each of the EVT-model morphisms f0, f1, f2 and f ′ must have an un-

derlying FOPEQ-model morphism, which we denote f−0 , f−1 , f−2 and f
′−

respectively. To build the amalgamation for EVT-models we must show

how to extend these to cover the data states of the EVT-models. This

EVT-model morphism follows the underlying FOPEQ-model morphism

on sort carrier sets for the values in the data states.

Given R.e ∈ R, suppose we start with any f0-maplet of the form

{. . . , {x1 7→ a1, . . . , xn 7→ an}, . . .}

7→ {. . . , {x1 7→ f−0 (a1), . . . , xn 7→ f−0 (an)}, . . .}e ∈ f0

where f−0 is the underlying map on data types from the FOPEQ-model

morphism.

Then the original two functions in f1 and f2 must have maplets of the

form

{. . . , {σ1(x1) 7→ h1(a1), . . . ,σ1(xn′) 7→ h1(an′)}, . . .}

7→ {. . . , {σ1(x1) 7→ f−1 (h1(a1)), . . . ,σ1(xn′) 7→ f−1 (h1(an′))}, . . .} ∈ f1

71

3.7 pushouts and amalgamation

and

{. . . , {σ2(x1) 7→ h2(a1), . . . ,σ2(xn′) 7→ h2(an′)}, . . .}

7→ {. . . , {σ2(x1) 7→ f−2 (h2(a1)), . . . ,σ2(xn′) 7→ f−2 (h2(an′))}, . . .} ∈ f2

where f−1 and f−2 are again the data type maps from the underlying

FOPEQ-model morphism, and h1 and h2 are obtained from Mod(σ1)

and Mod(σ2).

We then can construct the elements of the EVT-model morphism f ′,

which is the amalgamation of f1 and f2, as f ′-maplets of the form:

{. . . , {σ ′(x1) 7→ h ′(a1), . . . ,σ ′(xn′) 7→ h ′(an′)}, . . .}

7→ {. . . , {σ ′(x1) 7→ f ′−(h ′(a1)), . . . ,σ ′(xn′) 7→ f ′−(h ′(an′))}, . . .} ∈ f ′

As before, h ′ = (h1 + h2) is the corresponding function over the carrier-

sets in M ′ obtained from FOPEQ, and σ ′ = (σ ′1 ◦ σ1) + (σ ′2 ◦ σ2) is the

mapping for variable and event names obtained from the correspond-

ing construction in Sign. Here f
′− = f−1 + f−2 is the model morphism

amalgamation from the corresponding diagram for model morphisms

in FOPEQ, which ensures that the data states are mapped to correspond-

ing states in the model M ′
2.

So far, we have defined our institution for Event-B, EVT, outlined

the comorphism from FOPEQ to EVT, and shown that EVT meets the

requirements needed for correct use of the specification-building oper-

ators. Next, we discuss the pragmatics of specification-building in EVT

(Section 3.8), and illustrate, by example, how specifications can be writ-

ten and modularised in EVT (Section 3.9).

72

3.8 pragmatics of specification building in EVT

3.8 pragmatics of specification building in EVT

We represent an Event-B specification, that is composed of machines

and contexts, as a presentation (Definition 29) over EVT. Technically,

EVT allows for loose specifications which are not possible in Event-B,

however, we do not exploit this in our examples that follow.

Recall that, for any signature Σ, a Σ-presentation is a set of Σ-sentences.

A model of a Σ-presentation is a Σ-model that satisfies all of the sen-

tences in the presentation [52]. Thus, for a presentation in EVT, model

components corresponding to an event must satisfy all of the sentences

specifying that event. This incorporates the standard semantics of the

extends operator for events in Event-B where the extending event im-

plicitly contains all the parameters, guards and actions of the extended

event but can include additional parameters, guards and actions [5].

An interesting aspect is that if a variable is not assigned a value,

within an action, then a model for the event may associate a new value

with this variable. Some languages deal with this using a frame con-

dition, asserting implicitly that values for unmodified variables do not

change. In Event-B such a condition would cause complications when

combining presentations, since variables unreferenced in one event will

be constrained not to change, and this may contradict an action for them

in the other event. As far as we can tell, the informal semantics for the

Event-B language does not require a frame condition, and we have not

included one in our definition.

In the next section, we show how the traffic light Event-B specification

in Figure 2.1 can be represented in EVT.

73

3.9 writing specifications in the EVT institution

3.9 writing specifications in the EVT institution

We now introduce the Hets-style notation that we will use to write spec-

ifications over the EVT institution. Here, we show how the traffic light

example introduced in Figure 2.1 (Chapter 2) can be written and mod-

ularised in this setting. Our definition of EVT allows the restructuring

of Event-B specifications using the standard specification-building op-

erators for institutions [100]. Thus EVT provides a means for writing

down and splitting up the components of an Event-B system, facilitat-

ing increased modularity for Event-B specifications. Figure 3.5 contains

heterogeneous structured specifications corresponding to the Event-B

machine mac1 defined in Figure 2.1 (lines 1–21). Since Hets is our tar-

get platform, where each institution is represented as a logic, we use

its notation and implementation of the logic for CASL to represent the

FOPEQ components of our specifications.

lines 1–6 : TwoBools can be presented as a pure CASL specification,

declaring two boolean variables constrained to have different values.

lines 7–17 : LightAbstract is a specification in the EVT logic for a sin-

gle traffic light that extends (using keyword then) TwoBools. On line 9,

we can see that TwoBools is first translated via the comorphism ρ into

a specification over EVT. It contains the events set go and set stop,

with the constraint that a light can only be set to go if its opposite light

is not set to go. We use thenAct in place of the then Event-B keyword

to distinguish from the then specification-building operator.

lines 18–32 : The specification mac1 combines (using keyword and) two

versions of LightAbstract, each with a different signature morphism

(σ1 and σ2) mapping the specification variables and event names to

those in the Event-B machine. The where notation used on lines 22–32

is a convenient presentation of the signature morphisms, it is not part

of the syntax of the specification language that we use in Hets.

74

3.9 writing specifications in the EVT institution

1 logic CASL

2 spec TwoBools =
3 Bool
4 then
5 ops i go, u go : Bool
6 . ¬ (i go = true ∧ u go = true)

7 logic EVT

8 spec LightAbstract =
9 TwoBools with ρ

10 then
11 Initialisation ordinary
12 thenAct act1 : i go := false
13 Event set go =̂ ordinary
14 when grd1: u go = false
15 thenAct act1: i go := true
16 Event set stop =̂ ordinary
17 thenAct act1: i go := false

18 logic EVT

19 spec mac1 =
20 (LightAbstract with σ1)
21 and (LightAbstract with σ2)
22 where
23 σ1 = {i go 7→ cars go, u go 7→ peds go,
24 〈set go, ordinary〉
25 7→ 〈set cars go, ordinary〉,
26 〈set stop, ordinary〉
27 7→ 〈set cars stop, ordinary〉}
28 σ2 = {i go 7→ peds go, u go 7→ cars go,
29 〈set go, ordinary〉
30 7→ 〈set peds go, ordinary〉,
31 〈set stop, ordinary〉
32 7→ 〈set peds stop, ordinary〉}

Figure 3.5: A modular institution-based presentation corresponding to

the abstract machine mac1 in Fig 2.1.

This results in a presentation over the institution EVT for mac1 by

flattening out the structuring. Notice that the specification for each

individual light had to be explicitly written down twice in the Event-B

machine in Figure 2.1 (lines 11–15 and lines 16–20). In our modular

institution-based presentation we only need one light specification and

simply supply the required variable and event mappings. In this way,

EVT provides a more flexible degree of modularity than is currently

present in Event-B.

Figure 3.6 contains a presentation over EVT corresponding to the

main elements of the Event-B specification mac2 presented in Figure 2.1

(lines 22–59). Here, we present three CASL specifications and three EVT

specifications.

lines 1–10 : We specify the Colours data type with a standard CASL

specification, as can be seen in the context specification on lines 22–

27 of Figure 2.1. The specification TwoColours describes two variables

of type Colours constrained to be not both green at the same time.

This corresponds to the gluing invariants on lines 33 and 35 of Figure

2.1. The specification modularisation constructs used in Figure 3.6,

allow these properties to be handled distinctly and in a manner that

75

3.9 writing specifications in the EVT institution

1 logic CASL

2 spec Colours =
3 then
4 sorts
5 free type Colours ::= red|green|

orange

6 spec TwoColours =
7 Colours
8 then
9 ops icol, ucol : Colours

10 . ¬ (icol = green ∧ ucol = green)

11 spec BoolButton =
12 Bool
13 then
14 ops button : Bool

15 logic EVT

16 spec LightRefined =
17 TwoColours with ρ
18 then
19 Initialisation ordinary
20 thenAct act1: icol := red
21 Event set green =̂ ordinary
22 when grd1: ucol = red
23 thenAct act1: icol := green
24 Event set red =̂ ordinary
25 thenAct act1: icol := red

26 logic EVT

27 spec ButtonSpec =
28 BoolButton with ρ
29 then
30 Event gobutton =̂ ordinary
31 when grd1: button = true
32 thenAct act1: button := false
33 Event pushbutton =̂ ordinary
34 thenAct act1: button := true

35 spec mac2 =
36 (LightRefined with σ3)
37 and (LightRefined and
38 (ButtonSpec with σ5) with σ4)

39 where
40 σ3 = {i col 7→ cars colour, u col 7→ peds colour,
41 〈set green, ordinary〉
42 7→ 〈set cars green, ordinary〉,
43 〈set red, ordinary〉
44 7→ 〈set cars red, ordinary〉}
45 σ4 = {i col 7→ peds colour, u col 7→ cars colour,
46 〈set green, ordinary〉
47 7→ 〈set peds green, ordinary〉,
48 〈set red, ordinary〉
49 7→ 〈set peds red, ordinary〉}
50 σ5 = {〈gobutton, ordinary〉
51 7→ 〈set green, ordinary〉}

Figure 3.6: A modular institution-based presentation corresponding to

the refined machine mac2 specified in Figure 2.1 (lines 28–

59).

facilitates comparison with the TwoBools specification on lines 1–6 of

Figure 3.5.

lines 15–25 : A specification for a single light is provided in LightRefined

which uses TwoColours to describe the colour of the lights. As was the

case with LightAbstract in Figure 3.5, the specification makes clear how

a single light operates. An added benefit here is that a direct compari-

son with the abstract specification can be done on a per-light basis.

lines 11–14 , 26–34 : The specifications BoolButton and ButtonSpec ac-

count for the part of the mac2 specification that requires a button. These

details were woven through the code in Figure 2.1 (lines 30, 36, 44, 46,

57, 58) but the specification-building operators allow us to modularise

the specification and group these related definitions together, clarify-

ing how the button actually operates.

76

3.9 writing specifications in the EVT institution

lines 35–51 : Finally, to bring this all together we combine a copy of

LightRefined with a specification corresponding to the sum (and) of

LightRefined and ButtonSpec with appropriate signature morphisms.

This second specification combines the event gobutton in ButtonSpec

with the event set green in LightRefined thus accounting for set peds-

green in Figure 2.1. One small issue involves making sure that the

name replacements are done correctly, and in the correct order, hence

the bracketing on lines 37–38 is important.

The combination of these specifications involves merging two events

with different names: gobutton from ButtonSpec with the event set green

from LightRefined. To ensure that these differently-named events are

combined into an event of the same name we use the signature mor-

phism σ5 to give gobutton the same name as set green before combin-

ing them. Ensuring that the events have the same name allows the and

operator to combine both events’ guards and actions and the morphism

σ4 to name the resulting event set peds green. The resulting specifica-

tion also contains the event pushbutton. The labels given to guards/ac-

tions are syntactic sugar to make the specification aesthetically resemble

the usual Event-B notation for guards/actions.

3.9.1 representing refinement explicitly

As outlined in Chapters 1 and 2, refinement is a central aspect of the

Event-B methodology, therefore any formalisation of Event-B must be

capable of capturing refinement. In Section 2.3.4, we described how

the institutional framework accounts for Event-B refinement. Figure

3.7 uses the refinement syntax available in Hets to specify each of the

refinements in the specification of the concrete machine mac2:

lines 2–4 : define the data refinement of Bool into Colours, with an

appropriate mapping for the values.

77

3.10 summary

1 refinement REF : Bool to Colours =
2 Bool 7→ Colours,
3 true 7→ green,
4 false 7→ red
5 i go 7→ icol,
6 u go 7→ ucol,
7 〈set peds go, ordinary〉
8 7→ 〈set peds green, ordinary〉,

9 〈set peds stop, ordinary〉
10 7→ 〈set peds red, ordinary〉,
11 〈set cars go, ordinary〉
12 7→ 〈set cars green, ordinary〉,
13 〈set cars stop, ordinary〉
14 7→ 〈set cars red, ordinary〉
15 end

Figure 3.7: Defining the refinement relationships between the concrete

and abstract presentations.

lines 5–6 : define the refinement of the two boolean variables into

their corresponding variables of type Colour. In combination with

lines 2–4, this corresponds to the gluing invariants on lines 33 and 35

of Figure 2.1.

lines 7–14 : define the refinement relation between the four events:

this corresponds to the refines statements on lines 42, 48, 51 and 55

of Figure 2.1.

Thus, the Event-B specification of a traffic-lights system, that was in-

troduced in Chapter 2 can be captured and modularised using EVT.

3.10 summary

In this chapter, we have presented our definition of an institution for

Event-B, EVT and the associated set of proofs to show that it preserves

the axiomatic requirements of an institutional definition. This institu-

tion is an updated version of our original definition of an institution for

Event-B that includes a new kind of sentence for invariants and their as-

sociated satisfaction relation [40, 41]. We have also introduced the Hets-

style notation that we will use for writing (modular) EVT-specifications.

In the next chapter we formalise a translational semantics for Event-B

by translating Event-B specifications to EVT-specifications.

78

4
F O R M A L I S I N G A T R A N S L AT I O N A L S E M A N T I C S F O R

E V E N T- B

In this chapter we formalise a translational semantics for Event-B, using the

institution that we have defined for Event-B, EVT in Chapter 3. Our approach

involves outlining a three layer model of the Event-B language by splitting it

into its mathematical, infrastructure and superstructure sub-languages. Then,

we provide a translational semantics for each of these sub-languages.

4.1 introduction

In Section 2.1.2 we remarked that, although there is no fixed semantics

for Event-B models, the semantics is generally provided implicitly by

the proof obligations that Rodin generates for the model [59]. This can be

advantageous in that it allows the use of similar proof obligations across

multiple modelling domains. We propose a translational semantics of

Event-B from specifications written in Event-B to specifications written

in the institutional language of EVT. This does not inhibit the freedom

of being able to use Event-B as a calculus in diverse modelling domains

but rather amplifies it.

It has been shown that a shallow embedding of the Event-B logic in

Isabelle/HOL provides a sound semantics for the base logic of Event-B

but not for the full modelling language [102]. Moreover, Event-B is a

special form of Back’s Action systems which has been formally defined

using Dijkstra’s weakest precondition predicate transformers [8]. This

79

4.2 syntax of event-b

accounts for the refinement calculus used but not for a full semantic

definition of the Event-B modelling language itself.

4.2 syntax of event-b

Our objective is to define a translational semantics for Event-B by repre-

senting Event-B specifications as specifications over EVT, our institution

for Event-B [40, 41]. As described earlier, there are two basic languages

in Event-B, these are the Event-B mathematical language (proposition-

al/predicate logic, set theory and arithmetic) and the Event-B modelling

language [3]. We decompose the Event-B modelling language into two

further languages which (inspired by the UML specification) we call the

infrastructure language and the superstructure language. In order to trans-

late Event-B into the institutional framework we divide the constructs

of the Event-B language into three layers, each layer corresponding to

one of its three constituent languages, as illustrated in Figure 4.1.

• At the base of Figure 4.1 is the Event-B mathematical language.

The institution for first-order predicate logic with equality, FOPEQ,

is embedded via an institution comorphism into the institution for

Event-B, EVT (Theorem 32). The semantics that we define trans-

lates the constructs of this mathematical language into correspond-

ing constructs over FOPEQ.

• At the next level is the Event-B infrastructure, which consists of

those language elements used to define variables, invariants, vari-

ants and events. These are translated into sentences over EVT

(Definition 33).

• At the topmost level is the Event-B superstructure which deals

with the definition of Event-B machines and contexts, as well as

80

4.2 syntax of event-b

Event-B Su-

perstructure
refines, sees

EVT specification-

building operators

Event-B In-

frastructure

variables, invariants,

variants, events
EVT-sentences

Mathematical

Language

carrier sets,

constants, ax-

ioms, extends

FOPEQ-sentences

and specification-

building operators

Figure 4.1: We split the Event-B syntax into three components: super-

structure, infrastructure and a mathematical language

their relationships (refines, sees, extends). These are translated

into presentations over EVT.

The abstract syntax for Event-B is described briefly in [3] and we pro-

vide a more detailed version in Figure 4.2. A Specification consists of

any number of Machine and Context definitions. The nonterminals pred-

icate and expression are not defined in Figure 4.2. These are part of the

Event-B mathematical language, and in our translation these syntactic

elements will be supplied by FOPEQ, the institution for first-order pred-

icate logic with equality as described in Section 2.3.3, with predicates

corresponding to FOPEQ-formulae and expressions corresponding to

FOPEQ-terms.

Both machines and contexts allow the user to specify theorems which

are used to generate proof obligations. Since these must be conse-

quences of the specification and do not add any constraints, we omit

them from further discussion here. We order things in a slightly dif-

ferent manner to the standard in Event-B in that we use MachineBody,

81

4.3 a FOPEQ interface

EventBody and ContextBody to refer to the non-superstructure elements

of a machine, event or context.

Based on the syntax defined in Figure 4.2, we define the seman-

tics of each of the Event-B infrastructure sentences by describing a

mechanism to translate them into EVT-sentences. In order to carry

out such a translation we first extract the corresponding EVT signature

Σ = 〈S,Ω,Π, E, V〉 from any given Event-B specification. Contexts can

be represented entirely by the underlying mathematical language and

thus translated into specifications over FOPEQ. In Section 4.3, we define

the interface in Figure 4.3 in order to facilitate the use of some FOPEQ

operations and semantic functions.

We provide semantic functions for extracting the signature of an Event-

B specification in Section 4.4. Sections 4.5 and 4.6 define the semantics

of the Event-B superstructure and infrastructure languages respectively.

4.3 a FOPEQ interface

The Event-B formalism is parametrised by an underlying mathemati-

cal language and EVT, our institution for Event-B is parametrised by

FOPEQ, the institution for first-order predicate logic with equality. In

Figure 4.3, we define a FOPEQ interface in order to facilitate the use of

its operations and semantic functions within our semantic definition of

Event-B using EVT. The description of these operations is outlined in

Figure 4.3 and not specified further.

The semantic function PΣ described in Figure 4.3 takes a labelled

predicate and outputs a FOPEQ-sentence (Σ-formula). The semantic

function TΣ takes an expression and returns a Σ-term. These functions

are used later to translate Event-B predicates and expressions into Σ-

formulae and Σ-terms respectively.

82

4.3 a FOPEQ interface

Specification ::= (Machine | Context)+

Machine ::= machine identifier

[refines identifier]

[sees identifier+]

MachineBody

end

MachineBody ::= variables identifier+

invariants LabelledPred∗

[theorems LabelledPred+]

[variant expression]

events InitEvent Event∗

LabelledPred ::= label : predicate

InitEvent ::= event Initialisation

status ordinary

[then LabelledPred]

end

Event ::= event identifier

status Stat

[refines identifier+]

EventBody

end

EventBody ::= [any identifier+]

[where LabelledPred]

[with LabelledPred]

[then LabelledPred]

Stat ::= ordinary | convergent

| anticipated

Context ::= context identifier

[extends identifier+]

ContextBody

end

ContextBody ::= [sets identifier+]

[constants identifier+]

[axioms LabelledPred+]

[theorems LabelledPred+]

identifier ::= String

label ::= String

Figure 4.2: The Event-B syntax is parametrised by first-order logic as

indicated by our use of the nonterminals predicate and expres-

sion. These will be mapped to FOPEQ-formulae and terms

respectively in our translational semantics.

83

4.4 extracting the signature

The purpose of the semantic function M is to take two lists of identi-

fiers and a list of labelled predicates and, use these to form the FOPEQ

signature 〈S,Ω,Π〉. The reason for this is that when extracting a signa-

ture from a context (described in Figure 4.9) carrier sets are interpreted

as sorts and used to form S. The constants and axioms are used to form

Ω and Π. We assume that M provides this translation.

For simplicity, we assume that it is possible to use Event-B identifiers

in FOPEQ and EVT. Also, when we reference a Σ-formula in Figure 4.3

we mean a possibly open FOPEQ-formula over the signature given by

Σ. We only return a closed FOPEQ-formula when applying PΣ to axiom

sentences since they form closed predicates in Figure 4.9.

Of course, in order to from sentences in any institution, we must first

extract the signature.

4.4 extracting the signature

We define an environment Env to map machine/context names to signa-

tures, since, due to the superstructure components, machines/contexts

can refer to other machines/contexts. In all further definitions we use ξ

to denote an environment as defined by Env. We define the overloaded

semantic function D in Figures 4.4 and 4.5 to extract the environment

from a given specification (machines and contexts respectively).

We map D through the list of machines and contexts that make up

an Event-B specification. D extracts the signature from machines and

contexts. The function def (Figure 4.4) extracts the pair 〈event name,

status〉 for each event in the machine and these pairs form the E com-

ponent of the signature. The status is paired with each event name in

order to correctly form variant sentences which will be discussed in

Section 4.6. The function ref (Figure 4.4) forms the set of events that

a particular concrete event refines. We use this function to remove the

84

4.4 extracting the signature

FOPEQ Operations

• F.and : Σ-formula∗ → Σ-formula

This corresponds to the logical conjunction (∧) of a set of formu-

lae in FOPEQ.

• F.lt : Σ-formula× Σ-formula→ Σ-formula

This operation takes two formulae and returns a formula corre-

sponding to arithmetic less than (<).

• F.leq : Σ-formula× Σ-formula→ Σ-formula

This operation takes two formulae and returns a formula corre-

sponding to arithmetic less than or equal to (6).

• F.exists : identifier∗ × Σ-formula→ Σ-formula

This operation takes a sequence of identifiers and a formula and

returns a formula corresponding to the existential quantification

of the identifiers over the input formula.

• F.ι : identifier∗ → Σ-formula→ Σ-formula

This operation takes a list of identifiers and formula and returns

the input formula with the names of all the free variables (as

given by the list of identifiers) primed.

FOPEQ Semantic Functions

• PΣ : LabelledPred→ Σ-formula

• TΣ : expression→ Σ-term

• M : identifier∗ × identifier∗ × LabelledPred∗ → |SignFOPEQ|

Figure 4.3: The FOPEQ interface provides access to a range of oper-

ations and semantic functions which we assume to exist.

These are used throughout our semantic definitions in Fig-

ures 4.4, 4.5, 4.7, 4.8, 4.9 and 4.10.

names of the refined abstract events, and the status that each is paired

with, from the abstract machine’s signature before we combine it with

the concrete signature. We use the domain anti-restriction operator −C

to express this.

85

4.4 extracting the signature

For an Event-B specification SP, we form an environment ξ = DJSPKξ0 where ξ0 is the

empty environment.
• Env = Id→| Sign | # An environment maps machine/context names to their signatures

• D : Specification→ Env→ Env

D J〈 〉K ξ = ξ

D Jhd :: tlK ξ = D (JtlK) (D JhdK ξ)

• D : Machine→ Env→ Env # Extract and store the signature for a machine

D

u

wwwwww
v

machine m
refines a
sees ctx1, . . . , ctxn

mbody
end

}

������
~

ξ = ξ∪ {JmK 7→ (〈S,Ω,Π, E, V〉 ∪ r(ξJaK))}

where
〈S,Ω,Π〉 = {(ξ Jctx1K) ∪ . . . ∪ (ξ JctxnK)} # Include signatures from

‘seen’ contexts
〈E, V, RA〉 = DJmbodyK # Collect names from machine body
r : | Sign |→| Sign | # Include the signature for the abstract machine

(less the refined events)
r(ξJaK) = let Σa = ξJaK in 〈Σa.S,Σa.Ω,Σa.Π, RA −C Σa.E,Σa.V〉

• D : MachineBody→ 〈E, V, {identifier}〉 # Extract signature elements from machine-body

D

u

wwwwww
v

variables v1, . . . , vn

invariants i1, . . . , in
theorems t1, . . . , tn

variant n
events einit e1, . . . , en

}

������
~

= 〈E, V, RA〉

where
E = {defJeinitK, defJe1K, . . . , defJenK} # Names of events defined here
V = 〈Jv1K, . . . , JvnK〉 # Names of variables declared here
RA = refJeinitK∪ refJe1K∪ . . .∪ refJenK # Names of (abstract)

events refined here

• def : Event→ identifier× Stat # Extract event name & status from an event definition

def Jevent e, status s, refines e1, . . . , en, · · · endK = 〈JeK, s〉
def JeinitK = 〈Initialisation, ordinary〉

• ref : Event→ {identifier} # Extract names of refined events from an event definition

ref Jevent e, status s, refines e1, . . . , en, · · · endK = {Je1K, . . . , JenK}
ref JeinitK = {JeinitK}

Figure 4.4: The semantics of EVT-signature extraction for machines.

86

4.4 extracting the signature

• D : Context→ Env→ Env # Extract and store the signature for a context

D

u

wwww
v

context ctx
extends ctx1, . . . , ctxn

cbody
end

}

����
~
ξ = ξ ∪ {JctxK 7→ (DJcbodyK ∪

ξJctx1K ∪ . . . ∪ ξJctxnK)}

• D : ContextBody→ |SignFOPEQ| # Extract the FOPEQ signature from a context

D

u

wwww
v

sets s1, . . . , sn

constants c1, . . . , cn

axioms a1, . . . , an

theorems t1, . . . , tn

}

����
~

= 〈S,Ω,Π〉 # Sorts, operations, predicates

where
〈S,Ω,Π〉 = M((Js1K, . . . , JsnK), (Jc1K, . . . , JcnK), (Ja1K, . . . , JamK))

Figure 4.5: The semantics of FOPEQ-signature extraction uses the inter-

face described in Figure 4.3 in order to extract signature com-

ponents from the definition of a ContextBody.

1 Σmac2 = 〈 S, Ω, Π, E, V 〉
2 where
3 S = {Bool, COLOUR},
4 Ω = {red, green, orange},
5 Π = {},
6 E = {〈Initialisation, ordinary〉, 〈set cars go, ordinary〉, 〈set cars stop, ordinary〉,
7 〈set peds go, ordinary〉, 〈set peds stop, ordinary〉, 〈set cars green, ordinary〉,
8 〈set cars red, ordinary〉, 〈set peds red, ordinary〉, 〈set peds green, ordinary〉,
9 〈press button, ordinary〉},

10 V = {cars go:Bool, peds go:Bool, cars colour:COLOUR, peds colour:COLOUR, button pushed : Bool}

Figure 4.6: Signature extracted by application of the semantic functions

in Figures 4.4 and 4.5 to the Event-B machine specification

of mac2 in Figure 2.1.

In order to illustrate this signature extraction in practice, Figure 4.6

contains the signature that was extracted, using these semantic func-

tions from mac2 in Figure 2.1. Notice how the variables and events in

the signature include those from the abstract machine, mac1 in Figure

2.1 (lines 1–21), and the constants from the context in Figure 2.1 (lines

22–27) have been included as 0-ary operators using the FOPEQ inter-

face.

Once the environment has been formed, we can then define a system-

atic translation from specifications in Event-B to presentations over EVT.

87

4.5 defining the semantics of event-b superstructure sentences

We take a top-down approach to this translation which is comprised of

two parts.

• The first semantic mapping (in Figures 4.7 and 4.8) that we pro-

vide is from the superstructure components of an Event-B specifi-

cation to presentations over EVT (for machines) and presentations

over FOPEQ (for contexts) in Section 4.5.

• The second semantic mapping (in Figures 4.9 and 4.10) that we de-

fine is from the Event-B infrastructure sentences (invariants, vari-

ants, events and axioms) to sentences over EVT (for invariants,

variants and events) and sentences over FOPEQ (for axioms) in

Section 4.6.

4.5 defining the semantics of event-b superstructure sen-

tences

Based on the syntax defined in Figure 4.2 we have identified the con-

structs that form the Event-B superstructure language:

• extends context identifier+

• refines machine identifier

• sees context identifier+

• refines event identifier+

In this section, we define a semantics for the Event-B superstructure

language using specification- building operators. In Figures 4.7 and 4.8

we define the semantic function B to translate Event-B specifications

written using the superstructure language to presentations over EVT

that use the specification-building operators defined in the theory of

institutions [100]. We translate a specification as described by Figure

4.2 into a presentation over the institution EVT.

88

4.5 defining the semantics of event-b superstructure sentences

The semantics of an Event-B specification SP are given by BJSPKξ, where ξ = DJSPKξ0 is

the environment defined by Figure 4.4.

• B : Specification→ Env→ 〈|Pres|〉 # Process specifications in an environment,

B J〈 〉K ξ = 〈 〉 build presentations
B Jhd :: tlK ξ = (B JhdK ξ) :: (B JtlK ξ)

• B : Machine→ Env→ |PresEVT | # Build an EVT presentation for a machine

B

u

wwwwww
v

machine m
refines a
sees ctx1, . . . , ctxn

mbody
end

}

������
~

ξ =

〈
Σ,



spec JmK over EVT =

(Jctx1K and . . . and JctxnK)
with ρ

(and AΣJmbodyKJaKξ)∗

then

SΣJmbodyK
where

ρ : FOPEQ→ EVT



〉

∗AΣ is only used if the refines
where Σ = ξJmK. clause is nonempty

• AΣ : MachineBody→ identifier→ Env→ Sen(Σ) # Add relevant sentences
from the abstract machine

AΣ

u

wwwwww
v

variables v1, . . . , vn

invariants i1, . . . , in
theorems t1, . . . , tn

variant n
events einit, e1, . . . , en

}

������
~

JaK ξ = IΣJi1K and . . . and IΣJinK
and RΣJe1KJaKξ
and . . . and RΣJenKJaKξ

Conjoin sentences from each event definition

Figure 4.7: The semantics of Event-B superstructure sentences are de-

fined by translating them into presentations over EVT using

the semantic function B and the specification-building op-

erators defined in the theory of institutions (Table 2.3). Re-

call from Definition 29 that objects of Pres are of the form

〈Σ,Φ〉 for a signature Σ andΦ ⊆ Sen(Σ). This figure contains

the translation for machine specifications, the translation of

events and contexts is outlined in Figure 4.8.

89

4.5 defining the semantics of event-b superstructure sentences

• RΣ : Event→ identifier→ Env→ Sen(Σ) # Get sentences from each abstract
refined event

RΣ

u

wwwwww
v

event ec

status s
refines e1, . . . , en

ebody
end

}

������
~

JaK ξ =

let

Σa = ξJaK,
Signature of abstract machine

Σh = 〈Σa.S,Σa.Ω,Σa.Π,
{Je1K, . . . , JenK} � Σa.E,Σa.V〉,

σh : Σh ↪→ Σa,
Keep only refined (abstract) events

σm : Σh → Σ

Reassign refined event sentences to ec

σm =

〈 Σh.S ↪→ Σ.S, Σh.Ω ↪→ Σ.Ω,
Σh.Π ↪→ Σ.Π,
Σh.E 7→ {JecK} � Σ.E,
Σh.V ↪→ Σ.V

〉

in

(JaK hide via σh) with σm.

• B : Context→ Env→ |PresFOPEQ| # N.B. We get a FOPEQ

presentation for contexts

B

u

wwww
v

context ctx
extends ctx1, . . . , ctxn

cbody
end

}

����
~
ξ =

〈
Σ,


spec JctxK over FOPEQ =

Jctx1K and . . . and JctxnK
then

SΣJcbodyK


〉

where Σ = ξJctxK.

Figure 4.8: The translation of the event and context components of the

Event-B superstructure sentences. This is a continuation of

the translation described in Figure 4.7.

90

4.5 defining the semantics of event-b superstructure sentences

• SΣ : MachineBody→ SenEVT(Σ) # Build sentences from a machine body

SΣ

u

wwwwww
v

variables v1, . . . , vn

invariants i1, . . . , in
theorems t1, . . . , tn

variant n
events einit, e1, . . . , en

}

������
~

=


IΣJi1K∪ . . .∪ IΣJinK

∪ VΣJnK
∪ EΣJeinitK
∪ EΣJe1K∪ . . .∪EΣJenK



• IΣ : LabelledPred→ SenEVT(Σ) # Invariants

IΣ JiK = {〈JinvK, F.and(PΣJiK, F.ι(Σ.V)(PΣJiK))〉}

• VΣ : expression→ SenEVT(Σ) # Variant can’t increase for non-ord. events

VΣ JnK = {〈JeK, F.lt(F.ι(Σ.V)(TΣJnK), TΣJnK)〉 | (e, convergent) ∈ E}
∪ {〈JeK, F.leq(F.ι(Σ.V)(TΣJnK), TΣJnK)〉 | (e, anticipated) ∈ E}

• EΣ : InitEvent→ SenEVT(Σ) # Initial event: get sentences from actions

EΣ :

u

wwww
v

event Initialisation

status ordinary

then act1, . . . , actn

end

}

����
~

= {〈Initialisation, BA〉}

where
BA = F.and(PΣJact1K, . . . , PΣJactnK)

Figure 4.9: A semantics for Event-B infrastructure sentences is pro-

vided by translating them into sentences over EVT, denoted

SenEVT(Σ), for machines and sentences over FOPEQ, denoted

SenFOPEQ(Σ), for contexts. We use the interface operations

and semantic functions described in Figure 4.3 throughout

this translation. The event and context components of this

translation are contained in Figure 4.10.

91

4.5 defining the semantics of event-b superstructure sentences

• EΣ : Event→ SenEVT(Σ) # Non-initial event: get sentences from event body

EΣ :

u

wwwwww
v

event e
status s
refines e1, . . . , en

ebody
end

}

������
~

= {〈JeK, FΣJebodyK〉}

• FΣ : EventBody→ Σ-formula # Build a formula for an event definition

FΣ :

u

wwww
v

any p1, . . . , pn

where grd1, . . . , grdn

with w1, . . . , wn

then act1, . . . , actn

}

����
~

= F.exists(p, F.and(G, W, BA))

Formula is existentially quantified
over event parameters p

where
p = 〈Jp1K, . . . , JpnK〉 # List of parameters
G = F.and(PΣJgrd1K, . . . , PΣJgrdnK) # Guards
W = F.and(PΣJw1K, . . . , PΣJwnK) # Witnesses
BA = F.and(PΣJact1K, . . . , PΣJactnK) # Actions

• SΣ : ContextBody→ SenFOPEQ(Σ) # Context: get sentences from axioms

SΣ

u

wwww
v

sets s1, . . . , sn

constants c1, . . . , cn

axioms a1, . . . , an

theorems t1, . . . , tn

}

����
~

= {PΣJa1K, . . . , PΣJanK}

Figure 4.10: This is a continuation of the Event-B infrastructure sentence

translation outlined in Figure 4.9. Here, we provide the

event and context specific components of the translation of

the infrastructure sentences.

92

4.5 defining the semantics of event-b superstructure sentences

The construct that enables a context to extend others is used in Event-

B to add more details to a context. Since a context in Event-B only refers

to elements of the FOPEQ component of an EVT signature it is straight-

forward to translate this using the specification-building operator then.

As outlined in Table 2.3, then is used to enrich the signature with new

sorts/operations etc. [100].

A context can be extended by more than one context. In this case

the resulting context contains all constants and axioms of all extended

contexts and the additional specification of the extending context itself

[6]. To give a semantics for context extension using the specification-

building operators we and all extended contexts and use then to incor-

porate the extending context itself. The specification-building operator

and takes the sum of two specifications that can be written over differ-

ent signatures (Table 2.3). It is the most straightforward way to combine

specifications over different signatures [100].

In Event-B, a machine SEES one or more contexts. This construct is

used to add a context(s) to a machine so that the machine can refer to

elements of the context(s). From Theorem 32, we know that the rela-

tionship between FOPEQ and EVT is that of an institution comorphism.

This enables us to directly use FOPEQ-sentences, as given by the context

in this case, in an EVT-presentation. We use the specification-building

operation with ρ which indicates translation by an institution comor-

phism ρ [100]. The resulting machine specification is heterogeneous

as it links two institutions, EVT and FOPEQ, by the institution comor-

phism described in Definition 38 and Theorem 32.

An Event-B machine can refine at most one other machine and, as

previously outlined in Section 2.1.1, there are two types of machine

refinement: superposition and data refinement [6]. The specification-

building operator, then, can account for both of these types of refine-

ment because either new signature components or constraints on the

93

4.5 defining the semantics of event-b superstructure sentences

data (gluing invariants) are added to the specification. In Figure 4.7

the semantic function AΣ is used to process the events in the concrete

machine which refine those in the abstract machine.

Event refinement in Event-B is superposition refinement [6]. By super-

position refinement all of the components of the corresponding abstract

event are implicitly included in the refined version. This approach is

useful for gradually adding more detail to the event. In EVT, we have

not prohibited multiple definitions of the same event name. When there

are multiple definitions we combine them by taking the conjunction of

their respective formulae which will constrain the model. As mentioned

above, when refining an abstract machine we use the semantic function

AΣ, in Figure 4.7 to process the events in the concrete machine which

refine those in the abstract machine. AΣ in turn calls the semantic func-

tion RΣ (Figure 4.8).

RΣ restricts the event component of the abstract machine signature

to those events contained in the refines clause of the event definition

using domain restriction (C). AΣ also extracts the invariant sentences

from the abstract machine. This new signature is included in the ab-

stract via the signature morphism σh. We then form the signature mor-

phism σm which is the identity on the sort, operation, predicate and

variable components of Σh. σm maps each of the abstract event signa-

ture components that are being refined by the concrete event ec to the

signature component corresponding to ec. The resulting sentence uses

hide via and with to apply these signature morphisms (σh and σm)

correctly.

Figures 4.7 and 4.8 describe our translational semantics for the Event-

B superstructure sentences, next, we show how it is applied for the

Event-B infrastructure sentences.

94

4.6 defining the semantics of event-b infrastructure sentences

4.6 defining the semantics of event-b infrastructure sen-

tences

In this section, we define a translation from Event-B infrastructure sen-

tences to sentences over EVT. We translate the axiom sentences that are

found in Event-B contexts to sentences over FOPEQ as they form part

of the underlying Event-B mathematical language as shown in Figure

4.1. We refer the reader to Section 3.3, where we described how to trans-

late Event-B variants, invariants and events into EVT-sentences, and our

translational semantics described here mirrors this translation.

We define an overloaded meaning function, SΣ, for specifications in

Figures 4.9 and 4.10. SΣ takes as input a specification and returns a

set of sentences over EVT (SenEVT(Σ)) for machines and a set of sen-

tences over FOPEQ (SenFOPEQ(Σ)) for contexts. When applying SΣ to a

machine (resp. context) we also define semantic functions for process-

ing invariants, variants and events (resp. axioms). These are given by

IΣ, VΣ and EΣ. Axioms are predicates that can be translated into closed

FOPEQ-formulae using the semantic function PΣ which is defined in

the interface in Figure 4.3.

Given a list of invariants i1, . . . , in we define the semantic function IΣ

in Figure 4.9. Each invariant, i, is a LabelledPred from which we form

the open FOPEQ-sentence F.and(PΣJiK, F.ι(Σ.V)(PΣJiK)). Each invariant

sentence is paired with the invariant identifier inv to ensure that the

invariant is applied to all events when evaluating the satisfaction condi-

tion.

Given a variant expression n, we define the semantic function VΣ in

Figure 4.9. The variant is only relevant for specific events so we pair it

with an event name in order to meaningfully evaluate the variant expres-

sion. As described in Section 2.1.1, an event whose status is convergent

must strictly decrease the variant expression. An event whose status is

95

4.7 implementing the translational semantics

anticipated must not increase the variant expression. This expression

can be translated into an open FOPEQ-term using the semantic function

TΣ as described in Figure 4.3. From this we form a formula based on

the status of the event(s) in the signature Σ as described in Section 3.3.

Event-B machines are only permitted to have one variant [6].

In Figure 4.10 we define the semantic function EΣ to process a given

event definition. Event guard(s) and witnesses are predicates that can

be translated via PΣ into open FOPEQ-formulae denoted by G and W

respectively in Figure 4.10. In Event-B, actions are interpreted as before-

after predicates e.g. x := x + 1 is interpreted as x′ = x + 1. There-

fore, actions can also be translated via PΣ into open FOPEQ-formulae

denoted by BA in Figure 4.10. Thus the semantics of an EventBody def-

inition is given by the semantic function FΣ which returns the formula

F.exists(p, F.and(G, W, BA)) where p is a list of the event parameters.

A context can exist independently of a machine and is written as a

specification over FOPEQ. Thus, we translate an axiom sentence directly

as a FOPEQ-sentence which is a closed Σ-formula using the semantic

function PΣ given in Figure 4.3. Axiom sentences are closed FOPEQ-

formulae (elements of SenFOPEQ(Σ)) which are interpreted as a valid

sentences in EVT using the comorphism ρ.

Thus, we have formalised an institution-based translational semantics

for the three layers of the Event-B language. We illustrate this semantics

via an example in the next section.

4.7 implementing the translational semantics

In order to validate our translational semantics we developed a Haskell

[118] translator that generates the associated EVT-specifications when

given Event-B specifications, called EB2EVT. Event-B machines and con-

texts are stored as XML files (.bum for machine files and .buc for context

96

4.8 applying the translational semantics to an example

1 bbEventDefines ::[(Ident, Ident)]-> [EventDef] -> [Sentence]
2 bbEventDefines xx’ evtList =
3 let pp eBody = (eany eBody)
4 gg eBody = F.and (ewhere eBody)
5 ww eBody = F.and (ewith eBody)
6 ba eBody = F.and (ethen eBody)
7 bbEvent eBody = (F.forall (xx’ ++(pp eBody)) (F.and [gg eBody, ww eBody, ba eBody]))
8 bbEventDef evt = (Sentence (ename evt) (bbEvent (ebody evt)))
9 in (map bbEventDef evtList)

Figure 4.11: The Haskell implementation of the B function from Figure

4.9 as applied to a list of Event-B event definitions.

files) and we parse these to generate the associated EVT-specifications.

Our parser uses an Abstract Syntax Tree (AST) to internally represent

the Event-B specifications and the EVT-specifications are generated by

traversing this AST1. The generated EVT-specifications are syntactically

sugared in a Hets-like notation.

The source code for EB2EVT consists of four Haskell files resulting

in approximately 700 lines of code and is available at https://github.

com/mariefarrell/phdartefacts.git. We provide implementations of

the syntactic definitions and semantic functions that are contained in

Figures 4.2 (Syntax.hs), 4.3 (FOPEQ.hs), 4.4, 4.5, 4.7, 4.8, 4.9 and 4.10

(Semantics.hs). In Figure 4.11 we provide the associated code snippet

of the B function from Figure 4.9. The reader need only refer back to

Figure 4.9 to see their correspondence.

The file called ParseEB.hs parses the raw XML input to an AST and

returns the corresponding EVT-specifications using the syntactic defini-

tions and semantic functions that we have constructed.

4.8 applying the translational semantics to an example

We illustrate the use of EB2EVT using the cars on a bridge example pre-

sented in Abrial’s book [3, Ch. 2]. This Event-B specification has three

1 More details on the implementation of EB2EVT can be found in Appendix B.4.2.

97

https://github.com/mariefarrell/phdartefacts.git
https://github.com/mariefarrell/phdartefacts.git

4.8 applying the translational semantics to an example

1 CONTEXT cd
2 CONSTANTS
3 d
4 AXIOMS
5 axm1: d ∈ N

6 axm2: d > 0
7 END

8 MACHINE m0
9 SEES cd

10 VARIABLES
11 n
12 INVARIANTS
13 inv1: n ∈ N

14 inv2: n 6 d
15 inv3: n < 0 ∨ n < d
16 EVENTS
17 Initialisation
18 then
19 act1: n := 0
20 Event ML out =̂ordinary
21 when
22 grd1: n < d
23 then
24 act1: n := n + 1
25 Event ML in =̂ordinary
26 when
27 grd1: n > 0
28 then
29 act1: n := n − 1
30 END

Figure 4.12: Event-B abstract machine m0 cd. This specification consists

of the events ML out and ML in that model the behaviour of

cars leaving and entering the mainland respectively.

refinement steps, resulting in four machines and three contexts. The fi-

nal refinement step results in quite a large specification and so we omit

it here but it can be found in Appendix B.4.4. We present the resul-

tant EVT-specification corresponding to each of the first two refinement

steps. We also provide an independent, modular version of this speci-

fication in Appendix B.4.4 to illustrate some alternative approaches to

modularisation for this example.

4.8.1 the abstract model

Figure 4.12 contains an Event-B specification corresponding to the first

abstract machine in this development. It describes the behaviour of cars

entering and leaving the mainland. This abstract model is comprised of

a context (lines 1–7) specifying a natural number constant and a basic

98

4.8 applying the translational semantics to an example

1 spec cd =
2 ops d:N

3 . d > 0
4 end

6 spec m0 =
7 cd
8 then
9 ops n:N

10 . n6 d
11 n > 0 ∨ n<d
12 Events
13 Initialisation
14 thenAct n := 0
15 Event ML out =̂ordinary
16 when n<d
17 thenAct n:=n+1
18 Event ML in =̂ordinary
19 when n>0
20 thenAct n:=n-1
21 end

Figure 4.13: Syntactically sugared EVT-specification as generated by

EB2EVT that corresponds to the Event-B model in Figure

4.12.

machine description (lines 8–30). The corresponding EVT-specification

generated by EB2EVT is presented in Figure 4.13.

lines 1–4 : This is a CASL-specification that describes the context from

Figure 4.12. The constant d is represented as an operation of the

appropriate type and the non-typing axioms are included as pred-

icates. This is achieved by via the semantic function P that was

defined in the FOPEQ interface (Figure 4.3).

lines 5–20 : This is the EVT-specification that is generated correspond-

ing to the abstract machine in Figure 4.12 (lines 8–30). The ma-

chine variable, n is represented as an operation and the context

specification is included using then on lines 6 and 7. This corre-

sponds to the application of the semantic function B (Figures 4.7

and 4.8) to the superstructure components of the machine.

With regard to the infrastructure translation described in Figures 4.9

and 4.10, note that the invariant and event sentences have been syntac-

tically sugared in order to simplify the notation.

99

4.8 applying the translational semantics to an example

4.8.2 the first refinement

In the first refinement step, as can be seen in Figure 4.14, new events

are added to describe cars entering and leaving the island (IL out and

IL in on lines 30–42). New variables are added to record the number

of cars on the island, cars on the mainland and those on the bridge. The

events ML in and ML out are also refined to utilise the new variables,

a, b and c, that are introduced on line 5. Figure 4.15 contains an EVT-

specification corresponding to this Event-B machine specification.

lines 1–3 : The application of B to the refines and SEES clauses of

Figure 4.14 (lines 2–3) results in the application of the specification-

building operators (and, then) to include the abstract machine and

context specifications into the generated EVT-specification.

lines 4–9 : The new variables and (non-theorem) invariants are in-

cluded as operations and predicates respectively.

lines 10–32 : RΣ returns (mo hide via σh) with σm for each refined

event. The event names have remained the same during event

refinement in this example, and since events with the same name

are implicitly merged we can omit this notation here.

4.8.3 the second refinement

The second refinement step (Figure 4.16) adds a lot of new behaviour to

the Event-B model. The first addition is a context (lines 1–8) containing

colours which provide values for the new variables (ml tl and il tl).

These are used to control the behaviour of a pair of traffic lights (line

14). The new variables ml pass and il pass are used to record whether

or not a car has passed through the mainland or island traffic light

100

4.8 applying the translational semantics to an example

1 MACHINE m1
2 refines m0
3 SEES cd
4 VARIABLES
5 a, b, c
6 INVARIANTS
7 inv1: a ∈ N

8 inv2: b ∈ N

9 inv3: c ∈ N

10 inv4: n = a + b + c
11 inv5: a = 0 ∨ c = 0
12 thm1: a + b + c ∈ N theorem
13 thm2: c > 0 ∨ a > 0
14 ∨ (a + b < d ∧ c = 0)
15 ∨ (0 < b ∧ a = 0) theorem
16 VARIANT 2*a + b
17 EVENTS
18 Initialisation
19 then
20 act2: a := 0
21 act3: b := 0
22 act4: c := 0

23 Event ML out =̂ordinary
24 refines ML out
25 when
26 grd1: a + b < d
27 grd2: c = 0
28 then
29 act1: a := a + 1
30 Event IL in =̂convergent
31 when
32 grd1: a > 0
33 then
34 act1: a := a − 1
35 act2: b := b + 1
36 Event IL out =̂convergent
37 when
38 grd1: 0 < b
39 grd2: a = 0
40 then
41 act1: b := b − 1
42 act2: c := c + 1
43 Event ML in =̂ordinary
44 refines ML in
45 when
46 grd1: c > 0
47 then
48 act2: c := c − 1
49 END

Figure 4.14: Event-B machine m1 with additional events IL in and

IL out to model the behaviour of cars entering and leav-

ing the island. The variables a, b, and c keep track of the

number of cars on the bridge going to the island, the num-

ber of cars on the mainland and the number of cars on the

bridge going to the mainland respectively.

respectively. The objective of these variables is to ensure that the traffic

lights do not change so rapidly that no car can pass through them [3].

Events for these lights were added to the machine and the current events

were modified to account for this behaviour. In particular each of the

abstract events (ML out and IL out in Figure 4.14) are refined by two

events (ML out1, ML out2, IL out1 and IL out2 in Figure 4.16).

lines 1–7 : This CASL specification specifies the new data type Color.

This corresponds to the context described in the Event-B model in

Figure 4.16.

101

4.8 applying the translational semantics to an example

1 spec m1 =
2 m0 and cd
3 then
4 ops a:N

5 b:N

6 c:N

7 . n=a+b+c
8 a=0 ∨ c=0
9 variant 2∗a+b

10 EVENTS
11 Initialisation
12 thenAct a := 0
13 b := 0
14 c := 0

15 Event ML out =̂ordinary
16 when a+b<d
17 c=0
18 thenAct a:=a+1
19 Event IL in =̂convergent
20 when a>0
21 thenAct a:=a-1
22 b:=b+1
23 Event IL out =̂convergent
24 when 0<b
25 a=0
26 thenAct b:=b-1
27 c:=c+1
28 Event ML in =̂ordinary
29 when c>0
30 thenAct c:=c-1
31 end

Figure 4.15: EVT-specification corresponding to the first refinement step

as presented in Figure 4.14.

lines 8–14 : The superstructure component of the translation includes

the abstract machine (m0), and the contexts (cd and COLOR). In

this case the names of the events are changed in the refinement

step. The event ML out is decomposed into the events Ml out1

and ML out2. The event IL out follows a similar decomposition

into IL out1 and IL out2. We account for this refinement using

the signature morphisms and specification-building operators on

lines 10–13. We have not explicitly described these signature mor-

phisms but their functionality should be obvious from their respec-

tive subscripts.

line 26 : We use a simple variant notation for the variant expression.

lines 27–83 : The events are translated as before for the remainder of

the specification.

This example illustrates the use of EB2EVT as a means for bridging the

gap between the Rodin and Hets software eco-systems.

102

4.8 applying the translational semantics to an example

1 CONTEXT Color
2 SETS Color
3 CONSTANTS
4 red, green
5 AXIOMS
6 axm4: Color = {green, red}
7 axm3: green 6= red
8 END

9 MACHINE m2
10 refines m1
11 SEES cd, Color
12 VARIABLES
13 a, b, c,
14 ml tl, il tl,
15 il pass, ml pass
16 INVARIANTS
17 inv1: ml tl ∈ {red, green}
18 inv2: il tl ∈ {red, green}
19 inv3: ml tl = green ⇒ c = 0
20 inv12: ml tl = green ⇒ a + b + c < d
21 inv4: il tl = green ⇒ a = 0
22 inv11: il tl = green ⇒ b > 0
23 inv6: il pass ∈ {0,1}
24 inv7: ml pass ∈ {0,1}
25 inv8: ml tl = red ⇒ ml pass = 1
26 inv9: il tl = red ⇒ il pass = 1
27 inv5: il tl = red ∨ ml tl = red
28 thm2: 0 > a ⇒ a = 0 theorem
29 thm3: 0 > b ⇒ b = 0 theorem
30 thm4: 0 > c ⇒ c = 0 theorem
31 thm5: ¬ (d 6 0) theorem
32 thm6: b + 1 > d ∧ ¬ (b + 1 = d)
33 ⇒ ¬ (b < d) theorem
34 thm7: b 6 1 ∧ ¬ (b = 1)
35 ⇒ ¬ (b > 0) theorem
36 thm1: (ml tl = green ∧ a + b + 1 < d)
37 ∨ (ml tl = green ∧ a + b + 1 = d)
38 ∨ (il tl = green ∧ b > 1)
39 ∨ (il tl = green ∧ b = 1)
40 ∨ (ml tl = red ∧ a + b < d
41 ∧ c = 0 ∧ il pass = 1)
42 ∨ (il tl = red ∧ 0 < b ∧ a = 0
43 ∧ ml pass = 1)
44 ∨ 0 < a ∨ 0 < c theorem
45 VARIANT ml pass + il pass
46 EVENTS
47 Initialisation
48 then
49 act2: a := 0
50 act3: b := 0
51 act4: c := 0
52 act1: ml tl := red
53 act5: il tl := red
54 act6: ml pass := 1
55 act7: il pass := 1
56 Event ML out1 =̂ordinary
57 refines ML out
58 when
59 grd1: ml tl = green
60 grd2: a + b + 1 < d
61 then
62 act1: a := a + 1
63 act2: ml pass := 1

64 Event ML out2 =̂ordinary
65 refines ML out
66 when
67 grd1: ml tl = green
68 grd2: a + b + 1 = d
69 then
70 act1: a := a + 1
71 act2: ml tl := red
72 act3: ml pass := 1
73 Event IL out1 =̂ordinary
74 refines IL out
75 when
76 grd1: il tl = green
77 grd2: b > 1
78 then
79 act1: b := b − 1
80 act2: c := c + 1
81 act3: il pass := 1
82 Event IL out2 =̂ordinary
83 refines IL out
84 when
85 grd1: il tl = green
86 grd2: b = 1
87 then
88 act1: b := b − 1
89 act2: il tl := red
90 act3: c := c + 1
91 act4: il pass := 1
92 Event ML tl green =̂convergent
93 when
94 grd1: ml tl = red
95 grd2: a + b < d
96 grd3: c = 0
97 grd4: il pass = 1
98 then
99 act1: ml tl := green

100 act2: il tl := red
101 act3: ml pass := 0
102 Event IL tl green =̂convergent
103 when
104 grd1: il tl = red
105 grd2: 0 < b
106 grd3: a = 0
107 grd4: ml pass = 1
108 then
109 act1: il tl := green
110 act2: ml tl := red
111 act3: il pass := 0
112 Event IL in =̂ordinary
113 refines IL in
114 when
115 grd11: 0 < a
116 then
117 act11: a := a − 1
118 act12: b := b + 1
119 Event ML in =̂ordinary
120 refines ML in
121 when
122 grd1: 0 < c
123 then
124 act1: c := c + 1
125 END

Figure 4.16: Event-B machine m2 that refines the Event-B machine

in Figure 4.14 by adding new events Ml tl green and

Il tl green. The context Color on lines 1–8 adds a new

data type which is used by the ml tl and il tl traffic light

variables.
103

4.8 applying the translational semantics to an example

1 spec COLOR =
2 sorts Color
3 ops red : Color
4 green : Color
5 . Color = {green,red }
6 green 6= red
7 end

8 spec m2 =
9 m1 and cd and COLOR and

10 (m1 hide via σh ML out
) with σm ML out 7→ML out1 and

11 (m1 hide via σh ML out
) with σm ML out 7→ML out2 and

12 (m1 hide via σh IL out
) with σm IL out 7→IL out1 and

13 (m1 hide via σh IL out
) with σm IL out 7→IL out2

14 then
15 ops ml tl : {red,green }
16 il tl : {red,green }
17 il pass : {0,1 }
18 ml pass : {0,1 }
19 . ml tl=green ⇒ c=0
20 ml tl=green ⇒ a+b+c<d
21 il tl=green ⇒ a=0
22 il tl=green ⇒ b>0
23 ml tl=red ⇒ ml pass=1
24 il tl=red ⇒ il pass=1
25 il tl=red ∨ ml tl=red
26 variant ml pass+il pass
27 EVENTS
28 Initialisation
29 thenAct a := 0
30 b := 0
31 c := 0
32 ml tl := red
33 il tl := red
34 ml pass := 1
35 il pass := 1
36 Event ML out1 =̂ordinary
37 when ml tl=green
38 a+b+1<d
39 thenAct a := a+1
40 ml pass := 1
41 Event ML out2 =̂ordinary
42 when ml tl=green
43 a+b+1=d
44 thenAct a := a+1
45 ml tl := red
46 ml pass := 1

47 Event IL out1 =̂ordinary
48 when il tl=green
49 b>1
50 thenAct b := b-1
51 c := c+1
52 il pass := 1
53 Event IL out2 =̂ordinary
54 when il tl=green
55 b=1
56 thenAct b := b-1
57 il tl := red
58 c := c+1
59 il pass := 1
60 Event ML tl green =̂anticipated
61 when ml tl=red
62 a+b<d
63 c=0
64 il pass=1
65 thenAct ml tl := green
66 il tl := red
67 ml pass := 0
68 Event IL tl green =̂anticipated
69 when il tl=red
70 0<b
71 a=0
72 ml pass=1
73 thenAct il tl := green
74 ml tl := red
75 il pass := 0
76 Event IL in =̂ordinary
77 when 0<a
78 thenAct a := a - 1
79 b := b+1
80 Event ML in =̂ordinary
81 when 0<c
82 thenAct c := c - 1
83 end

Figure 4.17: EVT-specification corresponding to the second refinement

step as presented in Figure 4.16.

104

4.9 summary

4.9 summary

In this chapter, we presented a three layer model for Event-B by de-

composing it into its mathematical, infrastructure and superstructure

sub-languages. We have formalised a translational semantics, using

the theory of institutions, for each of these three constituent languages

and thus for Event-B itself. We have implemented this semantics in

the EB2EVT translator and shown how it generates syntactically sugared

EVT-specifications using the cars on a bridge example.

Our approach does not inhibit using multiple modelling domains

to evaluate the semantics of an Event-B model. In fact, we have pro-

vided scope for the interoperability of Event-B with other formalisms

that have been described in this framework and this will be discussed

further in the chapters that follow.

105

Part II

I N T E R O P E R A B I L I T Y

“Truth is invariant under change of notation.”

– Goguen & Burstall

5
A N I N S T I T U T I O N - T H E O R E T I C F O U N D AT I O N F O R

T H E T R A N S L AT I O N F R O M U M L T O E V E N T- B

In this chapter we present the institution-theoretic constructs required to facil-

itate interoperability between the Event-B specification language and the Uni-

fied Modelling Language (UML). In the preceding chapters, we used the theory

of institutions to provide a mathematically sound framework, over which we

defined a translational semantics for Event-B using the institutions for first-

order predicate logic with equality (FOPEQ) and Event-B (EVT). We present

an overview of (1) the existing institution for UML state machines, UML, and

(2) define the comorphism relationship between UML and EVT, providing a

generic basis for interoperability between both languages (represented as insti-

tutions). Our approach parallels that implemented in the UML-B plugin for

Rodin which translates state machines written in a UML-like language into

Event-B [115]. We show how this translation provides a mathematical ground-

ing for the UML-B Rodin plugin using our EB2EVT translator. In this way,

we translate the Event-B specification that was generated by the UML-B plu-

gin into an EVT-specification. We show that this EVT-specification matches

the specification obtained from applying our institution comorphism to UML.

5.1 introduction

Figure 5.1 frames our discussion by illustrating the various tools, lan-

guages and institutions at play throughout this chapter. We use the

UML-B plugin in Rodin to model a state machine and then generate

Event-B specifications. These Event-B specifications are then translated,

107

5.2 UML - the institution for simple uml state machines

UML-B

Event-B

Event-B and the Rodin Platform Institutions and Comorphisms

UML

EVT

UML-B Plugin Translation Institution Comorphism

EB2EVT

Figure 5.1: An overview of our approach to interoperability between

UML and Event-B.

using EB2EVT, to EVT-specifications. As an argument for correctness, we

show that these EVT-specifications correspond to the EVT-specifications

generated, using our comorphism, from the UML state machine.

The terminology of the institutions that we will utilise throughout

this chapter is outlined in Table 5.1. This will become useful later as

there is a substantial amount of notation used. In order to illustrate

our constructions we will use the ATM machine example as outlined

in Knapp et al. [73]. Figure 5.3 provides an illustration of the ATM be-

havioural state machine in question. We begin by describing the various

components of the institution for simple UML machines, UML. Then

we define and prove the comorphism relationship between UML and

EVT. Finally, we illustrate the application of this comorphism to the

ATM example and show how it provides a formal foundation for the

UML-B plugin using EB2EVT.

5.2 UML - the institution for simple uml state machines

The institution for UML state machines, denoted by UML, that encom-

passes behavioural and protocol state machines has been previously

defined by Knapp et al [73]. In this section, we review each of its com-

ponents in detail. UML is made up of three separate logics/institutions

as illustrated in Figure 5.2. The first being that for an OCL-like language

108

5.2 UML - the institution for simple uml state machines

UML

Behavioural

State Machines

Protocol State

Machines

ACT

Figure 5.2: The state machine tripod of institutions, encompassing the

institutions for behavioural and protocol state machines, is

formed using an underlying institution of actions ACT.

(denoted by ACT), the second being an institution for behavioural state

machines and the third component is a modification of the second to

account for protocol state machines [73]. Knapp et al. use the running

example on an ATM as illustrated in Figures 5.3 (behavioural state ma-

chine) and 5.9 (protocol state machine) to show that institution-theoretic

refinement can capture the relationship between these state machines.

The notation used for this institution is described in Table 5.1.

5.2.1 ACT - the underlying action institution

Knapp et al. start by defining the action institution, ACT , which is built

over a primitive guard institution where sentences are guards (predi-

cates) and models are variable-to-value mappings of the form VH → Val.

The satisfaction condition of this guard institution is the evaluation of

guard sentences using variable-to-value mappings given by the models.

From our perspective, this corresponds to the institution for first-order

predicate logic with equality, FOPEQ (Section 2.3.3), which forms the

basis for our Event-B institution as defined in Chapter 3. The action

institution is composed of the following:

109

5.2 UML - the institution for simple uml state machines

Symbol Meaning

ACT
The institution for an OCL-like language. This is the underlying

institution for UML (the action institution).

H = 〈AH, MH, VH〉

Objects of the signature category of ACT where AH is a set of actions

(action statements), MH is a set of messages and VH is a set of sort-

indexed variables.

Ω = ω
a,m−−→
Ω

ω′
Models of ACT are state transitions where ω and ω ′ are data states

of the form VH → Val.

UML
The institution for UML state machines as defined by Knapp et al.

[73].

Σ = 〈EΣ, FΣ, SΣ〉

Objects of the signature category of UML where EΣ is a set of (ex-

ternal) events, FΣ is a set of completion events and SΣ is a set of

states.

〈s0, T〉

Sentences written over UML where s0 indicates an initial state. T

represents a set of transitions of the form s
p[g]/a,f
−−−−→

T
s′ where p ∈

EΣ ∪ FΣ, g and a are guards and actions respectively written in the

language of ACT, and f is a set of completion events drawn from

FΣ.

〈IΘ,∆Θ〉 Objects in the model category of UML.

IΘ Initial configurations IΘ ∈ ℘(VH → Val)× SΣ.

∆Θ

Transition relation between configurations that emits messages.

Each configuration consists of an action state (VH → Val), an event

pool (℘(EΣ ∪ FΣ)) and a control state. The elements of ∆Θ are of the

form (w, p, s) m−→ (w′, p′, s′).

EVT The institution for Event-B.

Σ = 〈S,Ω,Π, E, V〉

Objects of the signature category of EVT with 〈S,Ω,Π〉 a signa-

ture over FOPEQ. E is a set of (event name, status) pairs with

status ∈ {convergent, anticipated, ordinary} and V is a set of

sort-indexed variable names.

〈e,φ(x, x′)〉

Sentences written over EVT where e ∈ dom(E) and φ(x, x′) is a first-

order formula whose free variables x, x′ are drawn from V and V′

respectively. Note that V′ is the same set as V but with all of the

variable names primed.

〈A, L, R〉

Objects of the model category of EVT. A is a model over

FOPEQ, L is the initialising set of variable-to-value mappings and

R is a set of event-indexed relations for each event name (except

Initialisation) containing the before and the after variable-to-

value mappings for the variables in V.

Table 5.1: Table of symbols summarising the components of the action

institution, ACT (Section 5.2.1), the UML state machine insti-

tution, UML (Section 5.2.3) and the institution for Event-B,

EVT (Chapter 3).
110

5.2 UML - the institution for simple uml state machines

signatures are tuples 〈AH, MH, VH〉 where AH is a set of action state-

ments such as x := x + 1. MH is a set of messages, which are

typically signals that have been sent out by the actions; and VH

is a set of sort-indexed variables. Große-Rhode proposed a simi-

lar institution of actions, however, action labels were incorporated

into the signature rather than action statements [57]. We discuss

this approach in parallel with that taken by Knapp et al. [73]

where relevant.

sentences are expressions of the form

gpre → [a]m B gpost

where gpre and gpost are sentences in the guard institution (predi-

cates). These are similar to OCL constraints, in that if the precon-

dition (gpre) holds then after executing the action a, the messages

m are output and the postcondition (gpost) holds.

models describe transition relations over data states and consist of a

set of 4-tuples of the form

{ω
a,m−−→ ω′}

Here ω and ω′ are data states of type VH → Val and thus con-

tain sort appropriate variable-to-value mappings for the variables

in the VH component of the action signature. As before, a is an

action statement and m is the corresponding set of messages that

are output. The approach taken by Große-Rhode uses action la-

bels here rather than action statements and this provides more

freedom when constructing sentences [57]. We have taken a simi-

lar approach in our institution for Event-B [40, 41].

satisfaction A model {ω a,m−−→ ω′} satisfies a sentence gpre → [a]m B

gpost if and only if ω |= gpre ∧ ω′ |= gpost. This is very similar to the

satisfaction condition evaluated in EVT (Definition 37).

111

5.2 UML - the institution for simple uml state machines

We have outlined two different approaches to defining an action insti-

tution - that of Knapp et al. [73] using action statements and that of

Große-Rhode [57] using action labels. We analyse each of these ap-

proaches below.

Action Statements vs Action Labels

There are positives and negatives to both of these approaches but we be-

lieve that action labels present a more liberal mechanism for describing

action sentences. We view the action statement approach as a heavy-

weight way of ensuring that all details are captured explicitly, however,

it seems counter-intuitive to include action sentences into the vocabu-

lary component of the institution for actions. This is because sentences

have to be defined over a specific signature and including sentences in

the signature restricts us to writing specific action sentences (only those

that are included in the signature) rather than deriving new sentences

from the signature.

Of course, sentences in this institution comprise of actions and guards.

It is possible to represent actions as before-after predicates as in the

Event-B language [3]. From this point of view, actions and guards are

both predicates. Guard statements may be built up from the signa-

ture whereas the set of action statements is predefined in the signature.

The signature could be infinite so that all possible action statements

are available for use. However, this is not very practical, particularly

with regard to implementation. A more uniform approach is taken in

EVT by viewing actions as before-after predicates. In fact, this approach

also simplifies the evaluation of the satisfaction condition. In any case,

the correspondence between the action institution and FOPEQ is visible,

particularly when we embed EVT-models into FOPEQ via comorphism

in order to evaluate their satisfaction.

112

5.2 UML - the institution for simple uml state machines

The action institution forms the basis of the institution for UML state

machines and in Section 5.2.2, we describe how the institution for be-

havioural state machines is built over ACT [73].

5.2.2 the behavioural state machine institution

The second component of the UML institution is the institution for be-

havioural state machines [73]. This institution is built over the action

institution described in Section 5.2.1 and is composed of the following:

signatures are triples of the form Σ = 〈EΣ, FΣ, SΣ〉 where EΣ are (ex-

ternal) events, FΣ are completion events1 and SΣ are states2. Mor-

phisms in this category are injective functions.

sentences are pairs 〈s0, T〉 where s0 ∈ SΣ is an initial state (for exam-

ple, to the state labelled Idle in the state machine in Figure 5.3). T

is a set of transitions from a state s to a state s′ written as:

s
p[g]/a,f
−−−−→

T
s′ (5.1)

where p ∈ EΣ ∪FΣ is a trigger event, g is a sentence in the guard in-

stitution, a is an action sentence and f is a set of completion events

drawn from FΣ. The intuition is that a transition from s to s′ can

occur if the event p is triggered (provided that the guard g is true),

and then an action, a, is executed and a set of completion events,

f is output.

models are pairs of the form Θ = 〈IΘ,∆Θ〉 where

IΘ ∈ ℘(VH → Val)× SΣ

1 The completion events consist of those states from which a completion transition orig-

inates (states with no trigger events) [73].
2 Note that EΣ ∩ FΣ = ∅.

113

5.2 UML - the institution for simple uml state machines

represents initial configurations and

∆Θ ⊆ CΣ × ℘(MH)×CΣ

where CΣ = (VH → Val)× ℘(EΣ ∪ FΣ)× SΣ represents a transition

relation between configurations that emits messages. These mes-

sages correspond to signals that are output (such as method calls

in the ATM example [73]). Each configuration is comprised of an

action state, an event pool and a control state. Each element of ∆Θ

has the form

(ω, p, s) m−→ (ω′, p′, s′) ∈ ∆Θ

where ω ∈ VH → Val is a variable-to-value mapping (as is ω′), p

and p′ are triggering events, s and s′ are states and m ⊆ ℘(MH) is

a set of messages.

satisfaction the satisfaction relation 〈IΘ,∆Θ〉 |=Σ 〈s0, T〉 holds if and

only if π2(IΘ) = s0 and ∆Θ is the least transition relation satisfying

Equations 5.2 and 5.3 as follows:

(ω, p :: p, s)
m\EΣ−−−→
∆Θ

(ω′, p C ((m∩ EΣ)∪ f), s′)

if ∃(s
p[g]/a,f
−−−−→

T
s′) · ω |= g ∧ ω

a,m−−→
Ω

ω′
(5.2)

When some event p is drawn from the event pool p, written as p :: p,

then the messages m \ EΣ are emitted and both the accepted and

completion events in (m∩EΣ)∪ f are added to the event pool of the

target configuration. Note that the set of messages is partitioned

twice, first into those messages that are not (external) events and

then into those that are either external or completion events.

(ω, p :: p, s) ∅−−→
∆Θ

(ω, p, s)

if ∀(s
p′[g]/a,f
−−−−→

T
s′) · p 6= p′ ∨ ω 6|= g

(5.3)

114

5.2 UML - the institution for simple uml state machines

Here, when no transition is triggered by the current event, the

event is discarded (p :: p becomes p along the transition described

by ∆Θ). We note that m \ EΣ can be empty in the first case (no

signals are sent out) but that in the second case it must be empty

as no transition has been triggered by the event. Here, it is impor-

tant to note that the data state, ω, and labelled state, s, have not

changed across the transition. The only change is that the event p

has not triggered anything so it has been dropped from the event

pool. This corresponds in EVT to the event p whose guard is not

satisfied by the data state ω, so no updates are made to the la-

belled state or to the data state as no actions occur.

5.2.3 the protocol state machine institution

The third component of the UML institution is the institution for pro-

tocol state machines. These are similar to behavioural state machines

but they use a precondition and postcondition to trigger a transition,

instead of showing guards and effects. Protocol state machines inhabit

a special designated error state when they encounter an event that does

not fire a transition rather than discarding it, as was the approach in

its behavioural counterpart (Section 5.2.2). In this scenario, signatures

are the same as those described for behavioural state machines with a

distinguished error state e included in the set of states SΣ. Sentences are

of the form (so, e, T) where

T ⊆ SΣ × (G(VH)× EΣ ×G(VH)× ℘(MH)× ℘(FΣ))× SΣ

such that G(VH) denotes a guard sentence over the variables in VH.

Models are similar to those of behavioural state machines, except for

in the second clause of ∆Θ where the error state is targeted when no

transition is enabled. In the behavioural state machine this would have

resulted in the event being discarded as can be seen in Equation 5.3.

115

5.3 translating from UML to EVT via an institution comorphism

The satisfaction condition now maintains that when some event is cho-

sen from the event pool, the precondition of some transition holds in

the source configuration and its postcondition holds in the target con-

figuration.

5.2.4 the state machine tripod of institutions

Knapp et al use a Grothendieck institution, as introduced in Section

2.4.2, to flatten these institutions [73]. Here, signatures are pairs 〈H,Σ〉

where H is a signature in the action institution, ACT, and Σ is as de-

scribed in Section 5.2.2. Sentences can either be sentences over the

action institution or either behavioural or protocol state machine sen-

tences (as described in Sections 5.2.2 and 5.2.3 respectively). Models

are pairs 〈Ω,Θ〉 where Ω is a model over the action institution and Θ

is as described above. The satisfaction condition is also inherited [73].

We refer the reader to Figure 5.2 for an illustration of the relationships

between these institutions.

5.3 translating from UML to EVT via an institution co-

morphism

In this section we define our institution comorphism from UML to EVT

and prove that the comorphism satisfaction condition is preserved (Def-

inition 214. We begin by discussing the similarities and the differences

between UML and EVT.

5.3.1 comparing EVT and UML

The EVT and UML institutions bear some similarities: they are both

built over a primitive institution that provides a mathematical language

116

5.3 translating from UML to EVT via an institution comorphism

for use in their sentences. This is FOPEQ for EVT and the action insti-

tution, ACT, for UML. In fact, both rely on this primitive institution in

order to evaluate their satisfaction conditions. With regard to the model

component of EVT and UML, both have a notion of transition states and

both also include a representation of initial state in their models (the L

component of an EVT-model and the IΘ component of an UML-model).

However, there are points upon which they differ. The underlying

action institution of UML includes messages such as method calls and

is similar to dynamic logic [73]. EVT does not have these properties be-

cause events in Event-B cannot call methods or other events. UML dis-

tinguishes between completion and external events whereas EVT does

not. A strength of EVT is that events can trigger non-deterministically

as long as their guards evaluate to true. EVT has no explicit repre-

sentation of state other than the data state which is represented using

variable-to-value mappings. These data states are represented in the

base (action) institution of UML but there are also labelled states in the

signature that indicate the state names on a state machine diagram.

Our intent is to emulate the UML-B plugin which translates state

machines constructed using a UML-like formalism into Event-B [115].

Therefore, we define an institution comorphism to translate sentences

written in the language of the UML institution to sentences written in

the language of the EVT institution.

The UML-B plugin uses an Event-B specific subset of UML that does

not include messages or completion events. The interface is Event-B

friendly in that it enables users to add parameters, guards, witnesses

and actions to transitions. The user can select if a new event should be

generated for a transition or if the transition should map to an event

already defined in a machine in the same project. The plugin translates

UML state diagrams into Event-B, but the user can decide how the states

should be translated: either every state is a separate boolean flag or

117

5.3 translating from UML to EVT via an institution comorphism

there is one state variable whose type is defined in a context to have as

values the names of the states in the state machine. Our choice is the

latter, more elegant, approach in what follows.

5.3.2 relating the action institution and FOPEQ

In order to achieve our goals we assume the existence of a comorphism

between the underlying institutions of UML and EVT (ACT and FOPEQ

respectively). We denote this assumed translation by

ρBASE : FOPEQ→ ACT

and outline the relationship here: the guard institution, over which the

action institution is built, is FOPEQ. We can write an action as a before-

after predicate because the variable names are included in the action

signature. For example, the action sentence

x := x+ 1

becomes the before-after predicate

x′ = x+ 1

Sentences in the guard institution are predicates so the above sentence

is in fact a sentence in the guard institution.

When we defined a comorphism embedding from EVT to FOPEQ

in Definition 38 we internalised the variables (both before and after

ones) as operator symbols of the appropriate sort. We can use a similar

construction to treat the action institution described by Knapp et al. as

FOPEQ. We will not present any more details on ρBASE here but we will

refer to its existence in what follows.

118

5.3 translating from UML to EVT via an institution comorphism

5.3.3 relating the UML institution and EVT

We outline the comorphism relationship between UML and EVT in

three parts. First we relate their signatures in Definition 51, then their

sentences in Defintion 52 and their models in Definition 53. Finally, we

prove that the comorphism we have defined preserves the axiomatic

properties required of a comorphism (Theorem 51).

Definition 51. ρ : UML→ EVT is a functor such that

ρSign(〈H,Σ〉) = 〈S,Ω,Π, E, V〉

The translation of H follows ρBASE to give 〈S,Ω,Π〉. Then, we translate

Σ = 〈EΣ, FΣ, SΣ〉 as follows:

• We take the union EΣ ∪ FΣ to form the set of (event name, sta-

tus) pairs E. Each of the elements of EΣ and FΣ are paired with

the status ordinary, as UML has no mechanism for evaluating or

proving any convergence properties. The definition of this comor-

phism thus provides UML with a means for describing conver-

gence properties.

• To represent the elements of SΣ we construct the new sort State

and add it to the set of sort names S in the EVT signature. The

elements of SΣ are added as 0-ary operators of sort State. We also

form V = VH ∪ {state : State} by including a single state variable to

represent the current state.

In both UML and EVT, signature morphisms are sort/arity-preserving

renaming functions. The only differences in EVT are that the Initialis-

ation event must be preserved by these renamings and there is a re-

striction as to how the status of events can be altered by signature

morphisms i.e. they must preserve the poset ordering { ordinary <

anticipated < convergent } (Definition 32).

119

5.3 translating from UML to EVT via an institution comorphism

As outlined in Definition 27, natural transformations relate functors

and so we define a natural transformation between the Sen functors of

the UML and EVT institutions in Definition 52.

Definition 52. ρSen : ρSign; SenUML → SenEVT is a natural transforma-

tion such that

ρSen〈s0, T〉 = {〈e,φ(x, x′)〉}

More specifically,

ρSen(s0, {s
p[g]/a,f
−−−−→

T
s′}) = {〈p,φ(x, x′)〉}

based on the definition of T in Equation 5.1 and via the following:

• For every {s
p[g]/a,f
−−−−→ s′ ∈ T} the EVT event sentence 〈p,φ(x, x′)〉 is

formed where

φ(x, x′) = (∀ x, x′ · state = s ∧ ρBASE([g]/a) ∧ state′ = s′)

and the variables x and x′ are drawn from VH. Note that the event

name corresponds to the trigger event p. The comorphism transla-

tion ρBASE([g]/a) translates the guard and action components from

ACT to EVT. This means that we construct the formula φ(x, x′)

which contains the guard and the action written as a before-after

predicate. Completion events that appear on the transition, f , are

omitted as they play no role in EVT.

• Since EVT does not require that events happen in a particular se-

quence, the ordering in the set of transitions T is implicitly forced

using our additional state variable. This is similar to the approach

taken by the UML-B plugin which does not use institution theory

in its translation process [115].

• We form the sentence 〈Initialisation,φ(x, x′)〉 where φ(x, x′) =

(∀ x, x′ · state′ = s0) in order to ensure that the initial value of the

state variable is set to the initial state in the UML state machine.

120

5.3 translating from UML to EVT via an institution comorphism

Note that we only produce events of status ordinary so there is no

confusion over the status. The initial state in the UML behavioural

state machine does not become an event, it is a variable update in the

Initialisation event so any UML-signature morphism that is applied

to s0 does not adversely affect the preservation of the Initialisation

event.

Dealing with Multiple Method Calls

We identified two distinct approaches to the definition of this natural

transformation, both arise as a result of multiple method calls appear-

ing on a UML-state transition. As events in Event-B share some sim-

ilarity with the concept of methods in a programming paradigm, the

first approach is to translate method calls that appear on UML-state

transitions into individual event sentences in EVT. However, if a transi-

tion contains multiple method calls then multiple events are generated

(one for each method call) in the corresponding EVT-specification. In

Event-B, these events are triggered in any order once their guards hold.

Therefore, in one trace of the Event-B machine, it is possible that not

all of these events are triggered while moving from their source to their

target state. Essentially, this approach offers a choice between these

methods whereas their appearance on the UML-state transition ensures

that they all occur when moving between the source and target states.

A possible solution is to add boolean flags during this translation. Al-

though burdensome, these can be used to ensure that all method calls

happen in order to progress from the source to target state.

The second approach involves representing each UML-state transi-

tion as an individual event in EVT. In this setting, the problem of multi-

ple method calls can be mediated by introducing intermediate states in

the state machine using a preprocessing phase before the sentence trans-

lation component of this comorphism takes place. Intermediate states

121

5.3 translating from UML to EVT via an institution comorphism

are only required when there is more than one method call appearing

on the transition and the total number of intermediate states required is

one less than the number of method calls that appear on the transition.

One caveat of this approach is that if two transitions execute the same

event, they are distinguished in the preprocessing phase. In order to

ensure the correct evaluation of preconditions and postconditions the

first transition will contain the guard and the last transition will contain

the postcondition/action(s) that is to be reached.

While both of these approaches are viable, we opted for the second

one as it is a more elegant solution. In either case, once the transla-

tion has occurred there is no way to distinguish between events that

are generated and those that are consumed along a transition. In EVT,

however, we do not view this distinction as a crucial requirement of

the translation. With regard to method calls that take parameters, these

parameters are included as global variables in the corresponding EVT-

specification. We introduce event parameters that are constrained (in

the guard part of the corresponding event) to have the value of these

global variables. This is an important feature of the sentence translation

so that, if a shared variable/event approach to modularisation is used

at a later stage in Event-B, the event will be partitioned correctly. Alter-

natively, we could add an action statement to indicate that the values

of these variables do not change during the event. Our approach using

parameters is more flexible, particularly in the setting of a refinement

step in EVT/Event-B.

Next, we define a natural transformation between the Mod functors

of the UML and EVT institutions in Definition 53.

Definition 53. ρMod : (ρSign)op; ModEVT → ModUML is a natural trans-

formation such that

ρMod(〈A, L, R〉) = 〈Ω,Θ〉

122

5.3 translating from UML to EVT via an institution comorphism

where Ω is a model over ACT and Θ = 〈IΘ,∆Θ〉 is a behavioural/proto-

col state machine institution model.

ρBASE(A) = Ω

Then,

ρMod(〈L, R〉) = Θ = 〈IΘ,∆Θ〉

is achieved by the following:

• L is transformed into IΘ by pairing L with the value of the state′

variable as assigned by the Initialisation event. Hence, IΘ =

〈{state′}−CL, {state′}CL〉where −C and C denote domain anti-restriction

and domain restriction respectively.

• Each element of ∆Θ is of the form

(ω, p, s) m−→ (ω′, p′, s′)

Each element of Rp ∈ R is indexed by its event name p and is of

the form:

(ω∪ {state 7→ s},ω′ ∪ {state′ 7→ s′})p

∆Θ is constructed by extracting the index event as the triggering

event p in the above formula, and the value of the designated state

and state′ variables to form the transition relation:

(ω, p, s) ∅−→ (ω′, p, s′)

Note that the value of the triggering event p is the same on both

sides of this equation and no messages are output. We could have

modelled the behaviour of the stream of messages using a variable

in EVT but we viewed this as an unnecessary addition that would

complicate the definition of this comorphism so it is omitted from

further discussion.

123

5.3 translating from UML to EVT via an institution comorphism

Definitions 51, 52 and 53 combine to define the institution comor-

phism ρ : UML → EVT such that for any signature Σ ∈ |SignUML|,

the translations ρSen
Σ : SenUML(Σ) → SenEVT(ρ

Sign(Σ)) of sentences and

ρMod
Σ : ModUML(ρ

Sign(Σ))→ModEVT(Σ) of models preserve the satisfac-

tion relation, that is, for anyψ ∈ SenUML(Σ) and M ′ ∈ |ModUML(ρ
Sign(Σ))|

ρMod
Σ (M ′) |=UML

Σ ψ ⇔ M ′ |=EVT
ρSign(Σ)

ρSen
Σ (ψ) (5.4)

We now prove that ρ : UML→ EVT is a valid institution comorphism.

Theorem 51. ρ : UML→ EVT is a valid institution comorphism.

Proof. Our objective is to prove that for any signature Σ ∈ |SignUML|,

the translations ρSen
Σ : SenUML(Σ) → SenEVT(ρ

Sign(Σ)) of sentences and

ρMod
Σ : ModUML(ρ

Sign(Σ))→ModEVT(Σ) of models preserve the satisfac-

tion relation, that is, for anyψ ∈ SenUML(Σ) and M ′ ∈ |ModUML(ρ
Sign(Σ))|

ρMod
Σ (M ′) |=UML

Σ ψ ⇔ M ′ |=EVT
ρSign(Σ)

ρSen
Σ (ψ)

Our proof is completed by showing that the satisfaction relations,

|=UML and modelsEVT, on each side of the ⇔ above are equivalent. We

begin by making the following substitutions based on the definitions

provided earlier. Let M ′ = 〈A, L, R〉, ψ = 〈s0, T〉 and Σ = 〈H,Σ〉. We

must show:

ρMod
〈H,Σ〉(〈A, L, R〉) |=UML

〈H,Σ〉 〈s0, T〉 ⇔ 〈A, L, R〉 |=EVT
ρSign(〈H,Σ〉) ρ

Sen
〈H,Σ〉(〈s0, T〉)

(5.5)

From Definition 51, we know that ρSign(〈H,Σ〉) = 〈S,Ω,Π, E, V〉. This

is a simple translation and so we omit it from further discussion in order

to simplify the notation. We also omit the subscript on ρ where obvious

as we have done in the above definition, this gives

ρMod(〈A, L, R〉) |=UML 〈s0, T〉 ⇔ 〈A, L, R〉 |=EVT ρSen(〈s0, T〉)

124

5.4 example

From Definition 52, ρSen(〈s0, T〉) yields the set of EVT-sentences

ρSen(〈s0, T〉) =

 〈Initialisation,∀ x, x′ · state′ = s0〉,

{〈p, ∀ x, x′ · state = s ∧ ρBASE(g ∧ a) ∧ state′ = s′〉}


Thus The satisfaction relation to be evaluated on the right hand side

becomes

〈A, L, R〉 |=EVT

 〈Initialisation,∀ x, x′ · state′ = s0〉,

{〈p,∀ x, x′ · state = s ∧ ρBASE(g ∧ a) ∧ state′ = s′〉}


which is reduced to satisfaction over FOPEQ in the usual way for

EVT (embedding the EVT-model into FOPEQ using the comorphism

described in Chapter 3).

Then, on the left hand side, ρMod(〈A, L, R〉) = 〈Ω,Θ〉 where Θ =

〈IΘ,∆Θ〉 and IΘ is formed by pairing the variable-to-value mappings

in L (without a reference to the state variable state′) with the initial

state obtained using the domain anti-restriction {state′}C L. This part of

the satisfaction condition corresponds to a simple equality check that

L(state′) = s0. This is always true as it is the value of the initial state.

Moreover, since the satisfaction of the ∆Θ component of the model is

evaluated over ACT, and we have assumed the existence of a mapping

between it and FOPEQ, then the satisfaction conditions on either side

of the⇔ above are equivalent and so the comorphism property holds.

In this section, we defined the comorphism relationship between UML

and EVT. In order to illustrate this comorphism in practice we apply it

to the ATM state machine in Figure 5.3 in Section 5.4.

5.4 example

In order to illustrate the comorphism in practice we apply it to the ATM

state machine used by Knapp et al. [73] and shown in Figure 5.3. This

125

5.4 example

Figure 5.3: UML state machine describing an automated teller machine

(ATM) based on the example in Knapp et al. [73].

machine has five states, representing a user entering an ATM card and a

PIN number, which is then verified. The transitions between the states

are labelled with events, guards and actions as described in Section

5.2.2. For example, from Figure 5.3 we can see that there is a transition

from state CardEntered to the state PINEntered triggered by the event

pin and which performs the action pin = p.

Preprocessing

We preprocess the state machine pesented in Figure 5.3 to produce the

state machine shown in Figure 5.4. This involves the introduction of the

new intermediate state Inter1 in order to sequence the method calls on

the original Verifying to Idle transition in Figure 5.3. We illustrate this

preprocessed state machine in Figure 5.4.

126

5.4 example

Figure 5.4: Preprocessed version of the state machine from Fig-

ure 5.3. Note that we have added the intermediate

state Inter1 during the preprocessing phase in order

to split up the method calls userCom.keepCard() and

bankCom.markInvalid(cardId).

Signature Extraction and Translation

Given the behavioural state machine of the ATM as described in Figure

5.4, we extract the UML-signature:

ΣATM = 〈EATM, FATM, SATM〉

where

EATM = {card, pin, reenterPIN, verified}

FATM = {PINEntered, Verified, Inter1}

SATM = {Idle, CardEntered, PINEntered, Verifying, Verified,

Inter1}

We note that PINEntered occurs both as a state and a completion event

[73]. This is because the transition between PINEntered and Verifying

has no explicit trigger declared. In this case, the machine creates a

127

5.4 example

trigger event with the same name as the state it is leaving in accordance

with the UML 2.5 specification document Section 14.2.3.8.3 [1].

Then, ρSign(ΣATM) = 〈S,Ω,Π, E, V〉 where

State ∈ S

{Idle, CardEntered, PINEntered, Verifying, Verified, Inter1}

⊆ Ω

E ={(card, ordinary), (pin, ordinary), (reenterPIN, ordinary),

(verified, ordinary), (PINEntered, ordinary),

(Verified, ordinary), (Inter1, ordinary)

,(Initialisation, ordinary)}

V =VH ∪ {state:State}

Once the signature has been extracted, we can extract the UML-sentences

and apply the translation ρSen to them.

Sentence Extraction and Translation

We extract the following UML-sentence 〈s0, T〉 from Figure 5.4 where

s0 =Idle

T ={Idle
card[true]/cardId = c,∅−−−−−−−−−−−−−−−−→

T
CardEntered,

CardEntered
pin[true]/pin = p , PINEntered−−−−−−−−−−−−−−−−−−−−→

T
PINEntered,

PINEntered
PINEntered[true]/bank.verify(cardId, pin),∅−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

T
Verifying,

Verifying
reenterPIN[trialsNum<3]/trialsNum++,∅−−−−−−−−−−−−−−−−−−−−−−−−−→

T
CardEntered,

. . .}

128

5.4 example

Then ρSen(〈s0, T〉) yields the following set of EVT-sentences:

〈
Initialisation,∀ x′ · state′ = Idle

〉
,〈

card,∀ x, x′ · state = Idle ∧ ρBASE([true]/cardId = c)

∧ state′ = CardEntered

〉
,

〈
pin, ∀ x, x′ · state = CardEntered ∧ ρBASE([true]/pin = p)

∧ state′ = PINEntered

〉
,

〈 PINEntered,∀ x, x′ · state = PINEntered

∧ ρBASE([true]/bank.verify(cardId, pin))

∧ state′ = Verifying

〉
,

〈
reenterPIN,∀ x, x′ · state = Verifying

∧ ρBASE([trialsNum<3]/trialsNum++) ∧ state′ = Verified

〉
,

. . .


In this section we described how the comorphism translation applies

to the signature and sentence components of a UML-specification. In

the next section we illustrate the preservation of the satisfaction con-

dition (Theorem 51) for the comorphism in light of the ATM example

presented in Figure 5.3.

5.4.1 preservation of the satisfaction condition

In this section, we illustrate the proof of Theorem 51 in light of the ATM

example. This section will be of particular interest to readers that are

not familiar with institution theory as a means for conveying the verac-

ity of our proof. Recall that an EVT-model of the EVT-signature that

satisfies the EVT-sentences obtained above is of the form 〈A, L, R〉 (Def-

inition 35) where A is a FOPEQ-model, L is the initialising set and R

is a set containing event-indexed variable-to-value mappings for the be-

129

5.4 example

fore and after states of every EVT-sentence (except those containing the

Initialisation event) described above. Thus the satisfaction relation

〈A, L, R〉 |=EVT ρ
Sen(〈so, T〉)

is evaluated for every sentence in ρSen(〈s0, T〉) using the embedding that

we described in Section 3.5 as follows:

〈A, L, R〉 |=EVT 〈Init,∀ x′ · state′ = Idle〉

⇔ ∀ s′ ∈ L ·A(s′) |=FOPEQ ∀ x′ · state′ = Idle

〈A, L, R〉 |=EVT 〈card,∀ x, x′ · state = Idle

∧ ρBASE([true]/cardId = c) ∧ state′ = CardEntered〉

⇔ ∀〈s, s′〉 ∈ Rcard ·A(s,s′) |=FOPEQ state = Idle

∧ ρBASE([true]/cardId = c) ∧ state′ = CardEntered

. . .

Then, ρMod(〈A, L, R〉) gives the UML-model

〈Ω, 〈IΘ,∆Θ〉〉

where Ω is a model in the action institution that we can embed into

FOPEQ in a similar way to A(s′) and A(s,s′) as outlined in Section 5.3.2. In

order to construct IΘ we use domain restriction {state′}C L to obtain the

value of the state′ variable. We remove all mappings that correspond to

the state′ variable as it does not appear in the UML state machine using

domain anti-restriction (−C). Then

IΘ = ({state′}−C L, {state′}C L)

The set of transition relations ∆Θ formed from R contains

(ω, p, s) ∅−→ (ω′, p, s′)

for every element of each Rp ∈ R where p is an event name. Here s and

s′ are obtained using the projection of the state and state′ variable values,

130

5.4 example

and these mappings are then omitted from the data states denoted by

ω and ω′ in the same way as for the construction of IΘ above.

Evaluating the satisfaction condition

ρMod(〈A, L, R〉) |=UML (so, T)

involves ensuring that π2(IΘ) = s0. Using the translation above, this

simplifies to Idle = Idle which evaluates to true. Then we ensure that

the following holds for each of the transition relations in ∆Θ outlined

above

∃ s
p[g]/a,f
−−−−→ s′ ∈ T · ω |= g ∧ (ω

am−→ ω′ ∈ Ω)

This can be further simplified, by embedding Ω into FOPEQ, to

∃ s
p[g]/a,f
−−−−→ s′ ∈ T · Ω |=FOPEQ ∀(x, x′) ∈ (ω∪ω′) · ρBASE(g ∧ a)

which is equivalent to the EVT-satisfaction condition described in Sec-

tion 3.5. This equivalence was core to the proof of Theorem 51 and we

have shown that our example behaves as expected.

5.4.2 analysing a selection of potential edge cases

We consider the potential edge cases of the proof of Theorem 51 and

argue that they do not affect our construction of the comorphism pre-

sented in Section 5.3.

1. If the guard or action is a contradiction then the satisfaction con-

dition holds because both satisfaction conditions are evaluated in

the base institution of the relevant formalism. We have shown that

these conditions are equivalent above.

2. There will always be variables present in V because the state vari-

ables will always be added to the signature. Therefore, we do not

need to consider this case further.

131

5.5 the comorphism as a foundation for uml-b

3. A state machine will always have states as there must always be

at least the start state, here the set SΣ can never be empty.

4. If there are no (trigger) events in the UML-signature (EΣ) then all

of the transitions are completion transitions. The events in EVT

will thus be the completion events (which are states) in FΣ.

5. If a state has multiple outgoing transitions with no triggers mul-

tiple events of the state’s name could be produced. In this case

these events are merged, even if they have contradicting guards.

We address this problem by generating a new event name each

time.

In this section, we used the illustrative example of an ATM state ma-

chine as described by Knapp et al. to show how our comorphism works

in practice [73]. This corresponds to the institution comorphism transla-

tion indicated on the right of Figure 5.1. Next, we show how this trans-

lation provides a mathematical grounding for the UML-B Rodin plugin

and our EB2EVT tool. This corresponds to the remainder of Figure 5.1.

5.5 the comorphism as a foundation for uml-b

In this section, we illustrate how the comorphism that we have defined

provides a mathematically sound basis for the approach to interoper-

ability achieved by the UML-B Rodin plugin. Figure 5.5 specifies the

ATM state machine using the UML-B plugin [114]. The labelled tran-

sition coming from the start state corresponds to the Initialisation

event as indicated in Figure 5.5. As documented in the UML docu-

mentation Section 14.2.3.7 [1], the initial state can be the source of at

most one transition. In contrast, the UML-B plugin allows modelling of

more than one transition from the initial state. When the correspond-

ing Event-B specification is generated an error occurs because the state

132

5.5 the comorphism as a foundation for uml-b

Figure 5.5: UML-B representation of the ATM state machine described

in Figure 5.4. Note the addition of the completion events

PINEntered, Inter1 and Verified as transitions.

variable updates are given the same label. This is a small shortcoming

of this plugin. Due to limitations with the plugin, the junction state

caused some issues, and we had to add the transition reenterPIN1 so

that there were no issues with the translation to Event-B.

The Event-B specification generated by the UML-B model described

in Figure 5.5 is shown in Figures 5.7 and 5.8. The context in Figure

5.7 provides for the inclusion of UML states as a new data type. This

data type, called behavioural STATES (line 2) has its carrier set parti-

tioned via an axiom (line 11). The corresponding ATM machine (Fig-

ure 5.5) uses a variable called behavioural to keep track of the states

before and after each event. This imposes control on the Event-B model.

The UML-B translation also includes intuitive labels for the Event-B ele-

ments (guards, actions etc.) as seen in Figure 5.8.

We formalised a translational semantics of Event-B in Chapter 4 that

allows the translation of specifications written in Event-B into specifi-

cations written over the institution EVT. We concentrate here on an

analysis of the raw signature and sentence output in order to demon-

133

5.5 the comorphism as a foundation for uml-b

strate our comorphism as described by Definitions 51 – 53 and Theorem

51.

We first extract the EVT signature from the specification in Figures 5.7

and 5.8 using our EB2EVT tool. This gives the signature Σ = 〈S,Ω,Π, E, V〉

with

S = {behavioural STATES}

Ω = {(Idle, behavioural STATES), (CardEntered, behavioural STATES),

(PINEntered, behavioural STATES), (Verifying, behavioural STATES),

(Verified, behavioural STATES), (Inter1, behavioural STATES)}

Π = {}

E = {(card,ordinary), (pin,ordinary), (PINEntered,ordinary),

(verified,ordinary), (reenterPIN,ordinary),

(userCom.keepCard,ordinary), (bankCom.markInvalid, ordinary),

(Verified, ordinary), (Inter1, ordinary)}

V = {(pin, N), (cardId, N), (trialsNum, N),

(behavioural, behavioural STATES)}

This signature corresponds to the signature generated by the applica-

tion of ρSign to the signature of the ATM machine over the UML institu-

tion. Here, the state variable is given by the variable behavioural and the

state sort is given by the behavioural STATES data type as generated by

the UML-B plugin. The elements of the carrier set for behavioural STATES

are included here as 0-ary operators.

The EVT-sentences shown in Figure 5.6 are then generated. Sentence

1 is generated by applying the comorphism from FOPEQ to EVT to the

context shown in Figure 5.7. Each of the remaining sentences (lines 2–

10) are generated for a particular event using the translational semantics

that we defined in Section 4.6. These sentences correspond to those

generated by the application of ρSen to the ATM sentences over UML

described earlier.

134

5.5 the comorphism as a foundation for uml-b

1 〈Init, partition(behavioural STATES, {Idle}, {CardEntered}, {PINEntered}, {Verifying}, {Verified}, {Inter1})〉
2 〈Init, (∀ x, x′ · pin′ :∈ N ∧ cardId′ :∈ N ∧ trialsNum′ = 0 ∧ behavioural′ = Idle)〉
3 〈card, (∀ x, x′, c : N · behavioural = Idle ∧ behavioural′ = CardEntered ∧ cardId′ = c)〉
4 〈pin, (∀ x, x′, p : N · behavioural = CardEntered ∧ behavioural′ = PINEntered ∧ pin′ = p)〉
5 〈PINEntered, (∀ x, x, c, p : N′ · behavioural = PINEntered ∧ c = cardId, p = pin ∧

behavioural′ = Verifying)〉
6 〈verified, (∀ x, x′ · behavioural = Verifying

∧ behavioural′ = Verified)〉
7 〈Verified, (∀ x, x′ · behavioural = Verified ∧ behavioural′ = Idle ∧ trialsNum′ = 0)〉
8 〈reenterPIN, (∀ x, x′ · behavioural = Verifying ∧ trialsNum < 3 ∧

behavioural′ = CardEntered ∧ trialsNum′ = trialsNum + 1)〉
9 〈Inter1, (∀ x, x′, c : N · c = cardId ∧ behavioural = Inter1∧ trialsNum′ = 0 ∧

behavioural′ = Idle)〉
10 〈reenterPIN1, (∀ x, x′ · trialsNum > 3 ∧ behavioural = Verifying ∧ behavioural′ = Inter1)〉

Figure 5.6: These are the EVT-sentences extracted from the Event-B spec-

ification shown in Figure 5.8. x and x′ can be inferred from

V, described above.

1 CONTEXT behaviour implicitContext
2 SETS behavioural STATES
3 CONSTANTS Idle, CardEntered, PINEntered, Verifying, Verified, Inter1
4 AXIOMS
5 typeof Idle: Idle ∈ behavioural STATES
6 typeof CardEntered: CardEntered ∈ behavioural STATES
7 typeof PINEntered: PINEntered ∈ behavioural STATES
8 typeof Verifying: Verifying ∈ behavioural STATES
9 typeof Verified: Verified ∈ behavioural STATES

10 typeof Inter1: Inter1 ∈ behavioural STATES
11 distinct states in behavioural STATES: partition(behavioural STATES, {Idle}, {CardEntered},

{PINEntered}, {Verifying}, {Verified}, {Inter1})
12 END

Figure 5.7: This is the context that was generated by the UML-B plugin.

It specifies a new datatype called behavioural STATES that

allows us to refer to the states in the corresponding UML

state machine.

135

5.5 the comorphism as a foundation for uml-b

1 MACHINE behaviour SEES behaviour implicitContext
2 VARIABLES pin, cardId, trialsNum, behavioural
3 INVARIANTS pin type: pin ∈ N
4 cardId type: cardId ∈ N
5 trialsNum type: trialsNum ∈ N
6 typeof behavioural: behavioural ∈ behavioural STATES
7 EVENTS
8 Initialisation ordinary
9 then pin init: pin :∈ N

10 cardId init: cardId :∈ N
11 trialsNum init: trialsNum := 0
12 init behavioural: behavioural := Idle
13 Event card =̂ordinary
14 any c
15 when c type: c ∈ N
16 isin Idle: behavioural = Idle
17 then enter CardEntered: behavioural := CardEntered
18 card Action1: cardId := c
19 Event pin =̂ordinary
20 any p
21 when p type: p ∈ N
22 isin CardEntered: behavioural = CardEntered
23 then enter PINEntered: behavioural := PINEntered
24 PIN Action1: pin := p
25 Event PINEntered =̂ordinary
26 any c, p
27 when c type: c ∈ N
28 p type: p ∈ N
29 behavioural guards1: c = cardId
30 behavioural guards2: p = pin
31 isin PINEntered: behavioural = PINEntered
32 then enter Verifying: behavioural := Verifying
33 Event verified =̂ordinary
34 when isin Verifying: behavioural = Verifying
35 then enter Verified: behavioural := Verified
36 Event Verified =̂ordinary
37 when isin Verified: behavioural = Verified
38 then behavioural actions3: trialsNum := 0
39 enter Idle: behavioural := Idle
40 Event reenterPIN =̂ordinary
41 when behavioural guards6: trialsNum < 3
42 isin Verifying: (behavioural = Verifying)
43 then behavioural actions6: trialsNum := trialsNum + 1
44 enter CardEntered: behavioural := CardEntered
45 Event Inter1 =̂ordinary
46 any c
47 when c type: c ∈ N
48 behavioural guards5: c = cardId
49 isin Inter1: behavioural = Inter1
50 then behavioural actions5: trialsNum := 0
51 enter Idle: behavioural := Idle
52 Event reenterPIN1 =̂ordinary
53 when behavioural guards7: trialsNum > 3
54 isin Verifying: (behavioural = Verifying)
55 then enter Inter1: behavioural := Inter1
56 END

Figure 5.8: The Event-B machine generated from the UML-B model

shown in Figure 5.5. Notice that every transition in the state

machine corresponds to an event in this Event-B machine.

136

5.5 the comorphism as a foundation for uml-b

Figure 5.9: Protocol state machine from [73] as represented using the

UML-B plugin.

5.5.1 refinement

As described in Sections 2.1.1 and 2.3.4, refinement is a feature of both

the Event-B formal specification language and the theory of institutions.

By extension therefore, UML-B and the institutions for UML and EVT

all obey some basic refinement properties. Knapp et al. use an ATM

protocol state machine to illustrate the refinement relationship between

state machines [73]. We present this abstract state machine using UML-

B in Figure 5.9. The machine in Figure 5.3 is a refinement of this protocol

state machine. Refinement outlined by Knapp et al. simply involves

a check for trace inclusion [73]. More formally, this means that for

an abstract state machine SMa and a concrete state machine SMc, the

refinement, SMa v SMc holds if for all Σ-models M,

M |σ∈Mod(SMc) ⇒ M |θ Mod(SMa)

Knapp et al. have shown that this is true for some “mediating signature”

Σ and morphisms θ : Sig(SMa)→ Σ and σ : Sig(SMc)→ Σ. They use the

notion of theory translation along a signature morphism to show this.

We can generate an abstract Event-B specification corresponding to

the state machine of Figure 5.9, and this is shown in Figure 5.11. In

UML-B, it is possible to refine state machines. However, context ex-

137

5.5 the comorphism as a foundation for uml-b

ProtocolUML−B BehaviourUML−B

ProtocolUML BehaviourUML

ProtocolEvent−B BehaviourEvent−B

ProtocolEVT BehaviourEVT

v

Institution Comorphism (Section 5.3)

Rodin Plugin Translation

EB2EVT

Figure 5.10: A refinement cube showing the various levels at which re-

finement takes place throughout the ATM example using

the UML and Event-B formalisms and their respective insti-

tutions.

tending is not supported so we had to do this manually. If we use event

extending and then add an auxiliary variable to match the state variable

in the abstract machine, then refinement holds in the Event-B version

with most of the proof obligations discharging automatically as can be

seen in Figure 5.12.

A feature of our approach is the foundation it provides for refinement

at different levels of specification. We illustrate the refinement relation

in the various formalisms discussed in this paper using a refinement

cube shown in Figure 5.10. The vertices in this cube represent specifica-

tions, where each specification is subscripted by the formalism that it is

represented in.

The (lower) front face of the cube represents the institution- theoretic

world of UML and EVT, where the downward vertical arrows represent

the translation via comorphism that we described throughout this paper.

The (upper) back face represents elements in the Rodin environment,

138

5.5 the comorphism as a foundation for uml-b

1 CONTEXT mac0 implicitContext
2 SETS
3 protocol STATES
4 CONSTANTS
5 Idle
6 Verifying
7 AXIOMS
8 typeof Idle: Idle ∈ protocol STATES
9 typeof Verifying: Verifying ∈ protocol STATES

10 distinct states in protocol STATES:
partition(protocol STATES, {Idle}, {Verifying})

11 END

12 MACHINE mac0
13 SEES mac0 implicitContext
14 VARIABLES
15 protocol
16 INVARIANTS
17 typeof protocol: protocol ∈ protocol STATES
18 EVENTS
19 Initialisation
20 then
21 init protocol: protocol := Idle
22 Event verify =̂ordinary
23 when
24 isin Idle: protocol = Idle
25 then
26 enter Verifying: protocol := Verifying
27 Event verified =̂ordinary
28 when
29 isin Verifying: protocol = Verifying
30 then
31 enter Idle: protocol := Idle
32 Event reenterPIN =̂ordinary
33 when
34 isin Verifying: protocol = Verifying
35 then
36 enter Idle: protocol := Idle
37 Event markInvalid =̂ordinary
38 when
39 isin Idle: protocol = Idle
40 then
41 Skip
42 END

Figure 5.11: The Event-B specification that was generated for the ab-

stract protocol machine that was shown in Figure 5.9.

139

5.6 summary

Figure 5.12: This figure illustrates that the proof obligations associated

with the Event-B models produced are discharged automat-

ically.

and in this case the downward vertical arrows represent the automatic

translation provided by the UML-B plugin.

The horizontal arrows of Figure 5.10 indicate a refinement relation

from an abstract to a concrete model or specification. That is, the left-

most face of the cube represents the four versions of the abstract pro-

tocol machine, and the rightmost face of the cube represents the four

versions of the more concrete behavioural machine. For example, the

topmost horizontal arrow represents the refinement in UML-B from Fig-

ure 5.9 to Figure 5.3.

5.6 summary

Our institution comorphism from the UML institution to EVT defines

interoperability in a way that can also account for the functionality of

the UML-B plugin. Thus, it provides a mathematically correct basis

140

5.6 summary

for the translation between UML state machines and Event-B models.

We discussed a number of approaches to defining this comorphism in

Section 5.3.3 and analysed a selection of potential edge cases to our

proof in Section 5.4.2.

Not only has this work exhibited the flexibility of our approach but it

has enabled us to provide a mathematical underpinning for the UML-B

plugin. We used the example of a simple ATM state machine to illus-

trate our approach throughout this chapter. Although the institution

for UML has not yet been implemented in Hets (as outlined in Section

1.2), we anticipate that once it has been included it will be possible to

implement this comorphism in Hets.

Moreover, by exploring the institution for simple UML state machines,

UML, and its interactions with EVT, this work provides a new perspec-

tive to UML. Since our comorphism allows the user to translate UML

state machines to EVT, it thus enhances these state machines with vari-

ant expressions which can be used to prove termination properties. Fur-

thermore, the distinction between generated and consumed events in

UML disappears in the comorphism, demonstrating that is not actually

part of the essential structure of UML as captured by the UML institu-

tion.

The combination of specifications in Figure 5.10 captures the essence

of the institution-theoretic approach to interoperability. As future work,

we intend to further explore the possibilities provided by our frame-

work. This would include investigating possible benefits of additional

features deriving from the institutional approach, such as more flexible

notions of refinement and modularisation constructs cross-cutting both

formalisms. Similarly, the possibility of integration elements of Event- B

with other UML diagrams, such as Event-B context with UML class di-

agrams, would greatly enhance the benefits of interoperability between

these formalisms.

141

Part III

M O D U L A R I S AT I O N

“Inside every large program, there is a small program trying to get

out.”

– C.A.R. Hoare

6
S P E C I F I C AT I O N C L O N E S : A N E M P I R I C A L S T U D Y O F

T H E S T R U C T U R E O F E V E N T- B S P E C I F I C AT I O N S

The preceding chapters have examined the syntactic and semantic components

of the Event-B language in great detail but we have not yet examined the size

or complexity of Event-B specifications in practice. Therefore, we present an

empirical study of Event-B specifications. Our study is exploratory, since it

is the first study of its kind, and we formulate metrics for Event-B specifica-

tions which quantify the diversity of such specifications in practice [42]. In

the setting of this thesis, this chapter motivates the need for standardised mod-

ularisation constructs in Event-B. We propose that the specification-building

operators that are available in the theory of institutions can provide a solution.

6.1 background and introduction

We analyse Event-B specifications essentially as software artefacts and

extend software engineering techniques to the Event-B language. We

have approached this empirically, by assembling a large corpus of Event-

B specifications and developing basic metrics to quantify their size and

complexity. Since refinement is a key feature of the Event-B approach,

we seek to quantify this aspect of Event-B specifications in particular, so

we can understand how such refinement is carried out in practice [86].

As discussed in Section 2.2.1, apart from refinement, the modulari-

sation constructs in Event-B are not well-developed, and a number of

alternatives have been proposed to address this. As a contribution to

the development of modularisation constructs for Event-B, we conduct

143

6.1 background and introduction

a study of clones in our corpus of Event-B specifications [98]. Studies

of this kind already exist for software written in a variety of program-

ming languages, but we believe this is the first time this topic has been

addressed at the specification level.

There has been some previous work done on identifying suitable met-

rics for Event-B developments by Olszewska and Sere using the Hal-

stead model [92]. The objectives of their work were to determine the

size of an Event-B specification, the difficulty in constructing it and the

effort required in designing and proving. The case study was limited to

just one project with 7 machines, and it is not clear whether the Halstead

metrics, dependent on defining and counting operations and operands,

are the most appropriate way of characterising Event-B specifications in

general.

6.1.1 clones in code and specifications

The detection, analysis, management and tool evaluation corresponding

to code clones represents a growing research area in the field of software

engineering [98]. The reuse strategy indicated by code cloning can be

beneficial in that it promotes the reuse of reliable code and can save time

and effort in development. It is often the case, however, that duplicated

code is caused by limitations in the programming paradigm’s modular-

isation mechanisms and thus such code signals that improvements are

required.

Roy et al. identify four different types of code clones [98], based on

categorising the nature of the match between different pieces of code:

type-1 : identical code fragments that differ only in variations of white

space and comments.

144

6.1 background and introduction

type-2 : structurally/syntactically identical code fragments that differ

only in the names of identifiers, literals, types, layout and com-

ments.

type-3 : a more liberal version of Type-2 clones which allow differences

such as additions, deletions or modifications of statements.

type-4 : code fragments that exhibit the same functional behaviour but

are implemented through very different syntactic structures.

In this chapter, we extend these definitions to detect clones between

Event-B machines, contexts and events. Some work on identifying clones

at the specification level has been done as part of the Arís project which

retrieves reusable software artefacts using a graph matching approach

[94]. However, this approach was based on finding matches in Spec#/C#

code, and does not provide any data on the kind of clones found or their

distribution.

6.1.2 modularisation of event-b specifications

In Section 2.2.1, we examined the current approaches to modularising

Event-B specifications [60]. Since such modifications are made via Rodin

plugin development, we enumerated the relevant modularisation plug-

ins in Table 2.1. The use of these plugins can potentially reduce the

number of clones in Event-B specifications, so we discuss them, where

relevant, in our clone analysis results in Section 6.4. Furthermore, the

specification-building operators can be used to modularise specifica-

tions and we illustrate how they can be used to declone Event-B spec-

ifications in Section 6.5. First, we analyse a corpus of Event-B specifi-

cations and support the claim that such modularisation constructs are

required in practice.

145

6.1 background and introduction

Smaller Projects
Project Macs Cons Evs Refs Sens Auto Inter RP Vars

Bepiv6.4∗ 2 10 45 1 948 560 370 0 45

SSF pilot 4 4 35 3 842 170 2 19 53

DynStabLSR 7 1 69 6 788 247 140 37 48

ch8circarbiter 6 2 46 5 764 153 0 31 57

TreeFilePerm 4 4 33 3 655 107 52 18 125

RCPert 4 3 53 3 583 199 28 29 18

RCNorm 4 3 49 3 565 146 32 27 18

ch912 mobile 6 1 43 5 539 134 19 19 34

ch917 train 5 3 38 4 539 128 5 23 35

SignalControl 10 4 106 9 497 135 0 26 100

ch7 conc 5 1 45 4 484 239 9 22 46

routing new 8 4 51 7 479 226 60 47 26

FloodSet 6 5 27 5 445 209 87 46 16

ch2 car 4 3 34 3 438 249 4 17 29

ssf 7 4 51 6 430 48 11 8 57

seqpattern 5 2 30 3 425 37 1 4 33

SharedBuffs 4 1 22 3 423 98 5 19 24

SimpleLyra 4 4 28 3 418 55 0 3 24

gcd 7 3 32 6 407 91 84 21 82

ch8circpulser 9 0 52 7 397 93 1 20 36

ch916 doors 5 3 31 4 380 101 2 14 23

ch8circroad 5 0 27 4 379 37 0 9 47

ch8circight 3 0 19 2 370 89 0 25 30

ch6 brp 6 3 47 5 360 149 0 16 29

Modes v2 3 3 30 2 333 108 13 3 30

aocs t2 3 2 29 2 297 105 13 18 26

CtsCtrl 4 3 18 2 274 150 19 21 18

Rabin 7 7 62 6 262 138 71 2 41

pomc 5 3 27 4 257 81 27 10 27

pomcwoterm 5 3 27 4 250 83 13 10 27

ch913 ieee 6 3 21 4 243 71 21 16 18

DSAOCSSv3 1 1 9 0 233 82 8 0 8

AStyleQR 5 1 19 4 226 70 5 14 26

DSAOCSSv2 1 1 9 0 219 81 8 0 8

ch4 file 1 5 2 17 4 192 47 5 9 28

FindP P1 4 1 21 3 191 27 15 13 18

aocs t2 um 2 2 16 1 178 95 8 13 19

pat9QR 5 0 22 4 161 44 6 8 24

BinarySearch 3 1 14 2 154 102 6 13 8

SSF1 1 3 6 0 148 25 0 0 3

ch911 tree 5 3 15 4 140 81 0 9 8

SSF minipilot 1 1 8 0 127 20 4 0 10

Club-120130 3 4 11 2 105 50 7 5 4

BoschSwitch 2 1 10 0 102 15 4 0 7

ch915 sort 3 1 12 2 101 56 11 11 8

ex-bubblesort 2 1 7 1 98 46 6 7 4

FindP D 2 2 8 1 98 47 2 5 6

FindP G 1 1 6 0 94 0 0 0 5

program2 2 2 9 1 88 192 5 3 5

Zer ess 0 5 0 0 88 40 15 0 0

ex-bubbles 2 1 8 1 83 41 1 13 4

HermanRing 2 3 8 1 82 35 22 2 7

cae-square 3 3 10 2 78 53 1 2 8

primrec 2 2 7 1 74 36 0 2 4

FindP P2 1 1 4 0 73 0 0 0 3

ch915 bin 3 1 11 2 68 32 5 7 7

AStyleQR 2 1 1 5 0 65 10 0 0 7

TrafficLights 2 1 11 1 58 20 0 0 7

ch915 inv 2 2 7 1 55 32 0 5 3

Cowboy 2 1 7 1 53 14 1 1 4

ch910 ring 2 2 6 1 52 24 4 1 3

ch915 sqrt 3 1 9 2 44 17 0 5 5

ch915 rev 2 1 6 1 43 28 3 4 4

ch915 mini 2 1 6 1 42 24 1 1 4

DiningCrypt 3 1 6 1 42 21 3 0 14

AStyleQR 3 1 1 3 0 40 6 0 0 4

AStyleQR 1 1 1 3 0 37 5 0 0 4

pat8SynMC 2 0 5 1 34 15 0 0 4

ch915 search 2 1 6 1 29 17 0 3 2

Table 6.1: Metrics for the Event-B projects that fall into the “smaller”

category.

146

6.1 background and introduction

Legend for column headings for Tables 6.1, 6.2 and 6.3
Macs: # of machines
Cons: # of contexts

Evs: # of events
Refs: # of refinement steps
Sens: # of sentences
Auto: # of automatic proofs
Inter: # of interactive proofs

RP: # of designated refinement proofs
Vars: # of variables

Larger Projects
Project Macs Cons Evs Refs Sens Auto Inter RP Vars

Midas∗ 43 61 2500 40 26395 2034 3163 2183 207

FlashFileFS 18 6 320 13 5442 974 531 88 343

DepSatSpec 14 2 2094 13 4771 1309 549 0 1811

ATM 7 12 129 6 3447 925 37 46 150

B2Bminip 12 0 228 11 2900 425 73 124 45

Bepiv3.3 6 6 137 1 2665 153 113 12 311

TSHHDMac 35 50 1487 18 2661 602 84 15 782

Bepiv5.0 9 10 329 8 2007 683 317 0 141

CDIS 7 6 103 6 1894 101 0 3 301

HDMac 19 25 718 16 1605 448 23 2 396

Pilot v3 4 4 98 3 1586 134 9 0 190

MLLanding 11 2 313 10 1432 286 210 0 277

FlashFileFL 6 12 109 5 1243 379 13 11 98

HLanding 11 7 321 9 1213 173 68 17 173

ch3 press 8 3 144 7 1200 0 0 0 70

OnbCont 9 3 224 8 1108 438 1 14 158

Table 6.2: Metrics for the Event-B projects that fall into the “larger” cat-

egory. Outliers are indicated by an asterisk∗.

All Projects (n = 85)
Project Macs Cons Evs Refs Sens Auto Inter RP Vars
Minimum 0 0 0 0 29 0 0 0 0

Median 4 2 27 3 274 83 5 8 24

Maximum 43 61 2500 40 26395 2034 3163 2183 1811

MADN 3.0 1.5 28.2 3.0 298.0 86.0 7.4 11.9 28.2

Smaller Projects (n = 69)
Project Macs Cons Evs Refs Sens Auto Inter RP Vars
Minimum 0 0 0 0 29 0 0 0 0

Median 3 2 17 2 192 56 5 8 18

Maximum 10 10 106 9 948 560 70 47 125

MADN 1.5 1.5 16.3 1.5 206.1 54.9 7.4 11.9 17.8

Larger Projects (n = 16)
Project Macs Cons Evs Refs Sens Auto Inter RP Vars
Minimum 4 0 98 1 1108 0 0 0 70

Median 10 6 270 8 1950 431 70 11 242

Maximum 43 61 2500 40 26395 2034 3163 21.83 1811

MADN 5.2 5.9 203.9 4.4 1076.4 398.1 97.1 17.0 130.5

Table 6.3: Summary statistics for the whole data set, and for the two

“smaller” and “larger” subdivisions.

147

6.2 analysing a corpus of event-b specifications : metrics and refinement

6.2 analysing a corpus of event-b specifications : met-

rics and refinement

Considering that there has been no previous large scale study in this

area, we focus on conducting an exploratory data analysis to identify

and quantify the main characteristics of Event-B specifications.

In order to carry out this analysis we assembled a corpus of Event-B

specifications. We obtained the Event-B projects in this corpus from a

number of publicly-available Event-B resources, including the Event-B

Wiki Page, the DEPLOY website and the case study tracks at the ABZ

conference (2014 and 2016). Some additional projects were obtained

directly from the developers who constructed them. In total we ob-

tained 85 Event-B projects, ranging from smaller textbook-style exam-

ples through to large-scale developments.

All of the specifications in these 85 projects could be processed using

the Rodin platform, and were thus available as a set of XML files in a

standardised format. To analyse these projects we developed a suite

of Python programs that read in the files in Rodin format, calculated

and reported metrics, and searched for occurrences of clones at various

levels1.

6.2.1 quantifying specification size

The most obvious measurable entities in an Event-B specification corre-

spond to the major syntactic categories. Just as the size of a software

project might be measured using code metrics such as number of classes,

methods or lines-of-code, we can get similar information from an Event-

B specification in terms of the number of contexts/machines, events and

1 More details on the implementation of our metric and clone detector can be found in

Appendix B.

148

6.2 analysing a corpus of event-b specifications : metrics and refinement

sentences. Specific to a formal approach, we can also measure the num-

ber of proof obligations (automatically and interactively proved). The

metric values for the 85 projects in the corpus are given in Tables 6.1

and 6.2.

In total, for all 85 projects in the corpus there are 359 contexts and 468

machines, which in turn contain 10828 events. One immediate difficulty

in analysing the corpus is the overall range of the specifications, from

small, textbook-style examples, through to major systems. We chose to

divide the corpus based on the number of sentences (these include axioms,

invariants, variants, guards, witnesses and actions) per project, since

this was the metric closest to lines-of-code, which might best reflect a

simple measure of size for a project. Thus the rows of Tables 6.1 and

6.2 are ordered based on the total number of sentences in a project. We

note that this is a coarse-grained measure as sentences may vary in

complexity. This level of complexity could be evaluated by converting

predicate sentences into conjunctive normal form (CNF) and counting

the number of clauses.

In order to be able to represent this information meaningfully and

extract useful information from it, we have split the corpus into two

different data sets. We investigated a variety of ways by which to carry

out this split, including:

• using the examples from the Modeling in Event-B textbook [3] as

models of “smaller” projects, and regarding projects with more

sentences than these as “larger” projects.

• extracting the outliers using Tukey’s test (the median plus 1.5

times the inter-quartile range); all such outliers were larger projects.

• using trimming [71], to identify a fixed proportion at the extreme

ends of the data set.

In practice, these three strategies resulted in almost the same set being

identified, and we have used Tukey’s test to categorise the 16 projects

149

6.2 analysing a corpus of event-b specifications : metrics and refinement

Number of Sentences in the Smaller Projects

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4

Number of Sentences in the Larger Projects

D
en

si
ty

0 5000 10000 20000 300000.
00

00
0

0.
00

01
5

0.
00

03
0

Figure 6.1: Histograms showing the distribution of the numbers of sen-

tences per project for the smaller and larger data sets. Note

that the vertical axes here are on different scales.

in Table 6.2 as “larger”. This also corresponds to the top 19% of the

projects, and excludes all but one of the textbook examples (the excep-

tion is the mechanical press controller from Chapter 3 of Abrial’s book

[3]). We refer to the 69 remaining projects listed in Table 6.1 as “smaller”.

These projects all have 10 contexts or under and 10 machines or under.

Some of these are non-trivial projects however, and the number of sen-

tences ranges from just 29 up to 948. Thus we have further divided

Table 6.1 into quartiles based on the number of sentences.

Tables 6.1 and 6.2 demonstrate the diversity of Event-B developments

and we provide them so that future studies have a measure with which

they can gauge the comparative size of Event-B developments.

6.2.2 metrics for event-b specifications

Figure 6.1 further illustrates the diversity in size between the projects,

showing the distributions of the sentences in the smaller and larger

project sets. These measurements signal that one should be cautious

when choosing a representative Event-B specification as the structures

150

6.2 analysing a corpus of event-b specifications : metrics and refinement

vary so much. In particular, the Midas project, which specifies an In-

struction Set Architecture (ISA) that gets refined to a usable Virtual

Machine (VM), is a dramatic outlier of this data set on almost all met-

rics, as is shown by the rightmost bar in Figure 6.1, and thus should be

considered quite distinctive as an Event-B specification.

Table 6.3 summarises the ranges for each of the metrics, giving the

minimum, maximum, median and madn values for the whole data set

and its two subdivisions. Due to the uneven distribution we use the

median and madn as robust measures in place of the mean and stan-

dard deviation. madn is the median of the absolute deviations from the

median, divided by z0.75 [71]. It is notable that in most cases the madn

is close to or exceeds the median, indicating a large spread of values for

each of the metrics.

We analysed all of the metrics in Tables 6.1 and 6.2 to check for inter-

relationships, using Spearman’s rank correlation coefficient. The most

notable very strong correlations (with p < 0.001 in all cases) were be-

tween the following variables:

• the number of events and the number of sentences in the small

data set (ρ = 0.905), where the median number of sentences per

event is 11 (madn = 4.4). However, in the larger project set, this

correlation is weak (ρ = 0.391). The larger projects contain a

greater number of contexts, thus adding sentences to the projects

that are not sentences within events.

• the number of machines and the number of events in both the

smaller (ρ = 0.849) and larger (ρ = 0.904) project sets. The median

number of events per machine is 25 (madn = 9.8) in the larger set

and 5 (madn = 2.7) in the smaller.

There was also a (lower) strong correlation in the smaller projects be-

tween the numbers of events/sentences and the number of automatic

proofs. Throughout the project set as a whole, there was a particu-

151

6.2 analysing a corpus of event-b specifications : metrics and refinement

larly strong correlation between the numbers of events and variables

(ρ = 0.935, p < 0.001), and also between the numbers of sentences

and variables (ρ = 0.919, p < 0.001). This indicates that as the size

of the state (represented by variables) increases so do the numbers of

events and sentences. New variables are often added during refinement

steps, as such, we found a strong correlation between the numbers of

machines and variables (ρ = 0.821, p < 0.001). Thus we expected the

strong correlation between the numbers of machines and variables that

was discovered during our analysis (ρ = 0.857, p < 0.001).

The data in Tables 6.1 and 6.2 shows that the number of automatic

proofs required dramatically exceeds the number of interactive proofs

in general. On average, in the larger projects, 78.6% of the proofs were

done automatically with 91.1% of the proofs automatic in the smaller

projects. This is important for automated verification, since it is a mea-

sure of the relative amount of theorem-proving work imposed on the

user, as compared to that done by the underlying prover. It is notable

that this percentage is much higher for the smaller examples than for

the larger ones. This is most likely due to the increased complexity

in modelling large-scale systems. As Event-B continues to be used in-

dustrially, this metric can be useful in measuring the degree to which

automated theorem-proving has increased in effectiveness.

6.2.3 quantifying refinements

Figure 6.2 contains a histogram with kernel distribution, showing the

number of refinement steps for each of the project sets. As can be seen,

in the larger project set the Midas project is again a dramatic outlier

with 40 refinement steps. The smaller project set does not contain any

dramatic outliers, with approximately 50% of these projects containing

only one refinement step. We postulate that this is due to the “smaller”

152

6.2 analysing a corpus of event-b specifications : metrics and refinement

project set containing specifications that have been designed for teach-

ing.

In both the smaller and the larger project sets there is a very strong

correlation between the number of machines and the number of refine-

ment steps in a project (ρ = 0.989 and ρ = 0.993 respectively, p < 0.001).

In most cases the relationship is almost 1:1, showing that linear refine-

ment chains are the most common refinement strategy used. By default,

a machine can refine at most one other, so typically a machine will have

one parent. These refinement chains bear a striking similarity to the

notion of refinement presented in the theory of institutions which is

typically a single, linear chain [100]. While the Feature Composition plu-

gin for Rodin allows the merging of machines in a refinement step [54],

this is clearly not the usual approach taken in these examples.

In Event-B, proof obligations are one indicator of the complexity of

the system being modelled. There is a specific set of proof obligations

that are generated through the refinement of events (guard strengthen-

ing and merging, action simulation, equality of a preserved variable,

witness well-definedness and witness feasibility). We list the number of

these designated refinement proofs in the rightmost column of Tables

6.1 and 6.2. These proofs are only generated for refined events that are

labelled as not extended. Events that are labelled as extended generate

no proof obligations that are designated for refinement as they are spe-

cific to superposition refinement. This is quite an efficient approach to

refinement as Rodin avoids the regeneration of these proofs [6], but is

only applicable where no data refinement has taken place.

There is a strong correlation between the number of refinement proofs

and the number of refinement steps in a project in the smaller project

set (ρ = 0.786, p < 0.001) resulting in the median ratio of 3 refinement

proofs to 1 refinement step. However, the correlation is not significant

for the larger project set. We found that developers of the larger projects

153

6.3 detecting specification clones

Number of Refinement Steps in the Smaller Projects

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Refinement Steps in the Larger Projects

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 6.2: Histograms with kernel distribution describing the number

of refinement steps taken in both the smaller and larger

project sets. Note that the vertical axes here are on differ-

ent scales.

often opted to avoid data refinement and use event extending to stream-

line their developments. Based on the data in Table 6.2 we can identify

5 out of 16 projects (31.25% of the “larger” project set) that used this

approach.

We had expected a correlation between the number of refinements

and the number of sentences, with machines increasing in size as they

became more concrete. However, this correlation is not strong even

in the smaller data set (ρ = 0.695, p < 0.001) and neither strong nor

significant in the larger, which, as mentioned earlier, are also influenced

by the large number of contexts.

6.3 detecting specification clones

In this section we describe our strategy for applying the clone types

discussed in Section 6.1.1 to Event-B.

In all cases we will be comparing sentences from one specification with

those in another: this includes axioms in contexts, invariants and vari-

ants in machines, and guards, witnesses and actions in events. There

154

6.3 detecting specification clones

are a number of approaches to matching in the literature, including met-

ric, token, text and abstract syntax comparison between statements [14].

In keeping in line with the literature which uses statements, we have

used sentences, which are the nearest comparable entity to statements,

as the smallest unit of matching. All sentences are tokenised to elim-

inate formatting and white-space, and we compare only sentences of

the same kind (thus axioms with axioms, etc.). We have discounted any

machines/contexts/events with 2 or less sentences in order to ensure

that we are only collecting meaningful clones.

We carry out this matching at three levels: contexts, machines and

events. The order of statements in an Event-B specification does not

matter [3]. However, the order of statements is important in the code

cloning literature and so we use sequences of sentences in our approach.

We base our search for clones on the clone types discussed in Section

6.1.1. In all cases, (context, machine and event):

• Type-1 clones correspond to exact matches between the full sen-

tence sequences in each case: that is all sentences in one compo-

nent must match all those in the other.

• Type-2 clones are matches between the full sentence sequences,

but where variable names are anonymised, each variable name

being replaced by a positional indicator.

• Type-3 clones are also matches between two sentence sequences

(with variable names anonymised or unanonymised), except that

matches between sub-sequences of the sentences are now allowed.

We calculate the percentage of type-3 clone similarity using the

maximum of the similarity calculated for both the anonymised

and unanonymised versions.

We do not explicitly search for type-4 clones (functional equivalence)

in what follows. From one perspective, all of our clones could be viewed

as type-4, since we are not really comparing code but specifications, and

155

6.4 results of the clone analysis

thus identifying a degree of functional equivalence. However, a more

robust search for type-4 clones would require proof of the equivalence

of the corresponding generated proof obligations for machines, contexts

and events, which we have not attempted. As such, we omit type-4

clones from further discussion here as future work.

We have conducted an automated analysis of our corpus of projects

by writing a series of Python scripts that read in the Rodin files, repre-

sent the components as an abstract syntax tree, and then perform com-

parisons at the context, machine and event level. We analyse machines

and events both with and without any corresponding variants and in-

variants included, to distinguish between sentences that are global and

local (to events) in the machine. Variants are only included with events

that have a status of anticipated or convergent, since, unlike ordinary

events, these are required to not increase and respectively decrease the

variant expression [3].

We have also identified the clones that occur most frequently through-

out our corpus, at the level of machines, contexts and events. As there

are no libraries for Event-B specifications and since contexts typically

supply custom data types, we were interested in examining whether or

not similar contexts have been used in the Event-B projects across our

corpus. Thus we also determine whether the clones that we have discov-

ered are inter-project (across different projects) or intra-project (within

the same project) clones.

6.4 results of the clone analysis

In this section we summarise the results of our clone analysis through

the entire corpus. In what follows we regard the three clone types as

mutually exclusive: by type-2 we mean all those that are type-2 but

not type-1, and by type-3 we mean those that are type-3 but not type-1

156

6.4 results of the clone analysis

or type-2. Table 6.4 summarises the results of this analysis, providing

counts for the number of clonings identified (type-1, type-2 and type-3)

and also the number of clones. Our analysis returns pairs correspond-

ing to instances of cloning that have occurred. We refer to these as clone

pairs or clonings in what follows.

6.4.1 context clones

As can be seen in the first row of Table 6.4, our analysis found 40 clone

pairs at the context level in the corpus, consisting of 18 type-1 and 22

type-3 clone pairs. We had expected this, since contexts resemble data

types in a programming language. The theory plugin offers a potential

solution to this problem as it provides a way of adding new data types

to Rodin [18].

When we investigated the actual clones that were returned we found

22 context clones, of which 18 occurred on an inter project basis and 6

on an intra project basis. There were 2 which occurred both as inter and

intra project clones. The fact that so many of them occurred between

different projects supports our claim that they are being re-used in a

manner similar to libraries. The inter project clonings occurred mostly

between projects that shared a common approach or between projects

that were modelling the same kind of system. For example, there were

quite a few inter project clonings in the separate developments of a

Hemodialysis Machine [61, 80], the different versions of BepiColombo

[75], and the assortment of file systems being modelled (Flash FS, Flash

FL and Tree FS) [3, 24, 25].

157

6.4 results of the clone analysis

Event-B Clone Pairs Actual Clones

Component Type-1 Type-2 Type-3 Total Total Occur.

Contexts 18 0 22 40 22 51

Machines 13 7 937 957 19 40

Machines (+VI) 9 7 943 959 13 28

Events 276 942 4781 5999 131 417

Events (+VI) 35 158 7229 7422 65 175

Table 6.4: The occurrence of clone pairs and clones per type throughout

the entire corpus. Note that ‘(+VI)’ indicates that the variants

(where appropriate) and invariants have been included in the

analysis.

6.4.2 machine clones

In Event-B, a machine is generally reused by means of refinement and

thus we did not expect to find many type-1 clonings or inter project

clones. As can be seen in the second and third data rows of Table

6.4, we discovered a very small number of type-1 and type-2 machine

clonings. We did, however, manage to identify 937 type-3 clone pairs in

the analysis without the variants and invariants included.

Since the type-3 clone pairs are identified in terms of their similarity,

expressed as percentages, we provide an illustration of the distribution

of type-3 clones in Figure 6.3. The top two histograms in Figure 6.3

show the data for machine-level clone pairs, and the bottom two for

event-level clone pairs. As expected, the distributions for machine-level

clones skew to the left, as most clones had a low similarity percentage,

indicating that there is some basic machine structure being reused over

and over again but the part that is being cloned does not contain a

158

6.4 results of the clone analysis

large proportion of the sentences. Nonetheless, there is still a significant

number of clone pairs that have at least 50% of their sentences matching.

In total we found 5 inter and 14 intra project full machine clones. This

reduced to 3 inter and 10 intra project clones when the variants and in-

variants were included. Most of these were within the same project and

therefore were most likely caused by refinement chains. These numbers

are quite small with regards to the size of our corpus, thus we conclude

that full machines typically do not incur a huge amount of cloning. In

cases where this form of cloning occurs, the pattern plugin can be used

as a way of modularising the specification [47].

6.4.3 event clones

Since events are the smallest unit of modularisation, we expected a

higher level of cloning to be found between pairs at this level. The

fourth data row of Table 6.4 shows that we identified 276 type-1, 942

type-2 and 4781 type-3 clone pairs or instances of event clonings in our

corpus. As can be seen from the fifth data row in Table 6.4, this num-

ber decreased for type-1 and type-2 when we included the appropriate

variants and invariants (35 and 158) respectively. The number of type-3

clone pairs, however, increased quite dramatically to 7229. This is be-

cause the inclusion of variants and invariants increased the size of many

small events beyond our threshold of 2 sentences, thus including events

in the analysis that were absent when these variants and invariants were

not included. For events that contained a small number of sentences

before the inclusion of variants and invariants, this corresponded to a

crude search for variant and invariant clones.

There were 131 different event clones, of which 30 were inter and

126 were intra project clones. Intra project clonings occurred 382 times

and they occur in the scenarios where one event is refined throughout

159

6.5 decloning event-b specifications

20 0 20 40 60 80 100 120
Clone similarity percentage

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
ty

Machines

20 0 20 40 60 80 100 120
Clone similarity percentage

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
ty

Machines with variants and invariants

0 20 40 60 80 100
Clone similarity percentage

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

Events

0 20 40 60 80 100
Clone similarity percentage

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

Events with variants and invariants

Figure 6.3: Histograms describing the distribution of Type-3 clones

across the entire corpus of Event-B specifications. Note that

we have omitted type-3 context clones as there were relatively

few of these.

a project and also where there are event clonings within the same ma-

chine. We found 210 situations where one event in a machine was a

clone of another event in the same machine. This accounts for approx-

imately 1.9% of the total events in our corpus and 17.2% of the total

type-1 and type-2 event clone pairs. Inter project clonings occurred a

total of 37 times.

Based on this analysis, we conclude that there may be a relationship

between the number of intra event clones between different machines

in the same project and the level of refinement of that project. However,

this needs to be examined in more detail.

6.5 decloning event-b specifications

One way of addressing the large number of type-2 clones at the event

level is through the provision of facilities for event re-use. This could

160

6.5 decloning event-b specifications

be done either through a renaming feature as a Rodin plugin, or by

introducing parmetrisation constructs at the Event-B language level.

The renaming refactory plugin could offer some assistance here as it

renames components of an Event-B model with the renamings propa-

gating through to the proof obligation level. However, it does not offer

any way of instantiating copies of events. The Pattern and the Generic

Instantiation plugins are also relevant, but these currently work only at

the machine level, rather than the event level [47, 108].

If more sophisticated modularisation constructs were made available

for Event-B, they could potentially alter the development strategy taken

by developers and turn what would have been type-3 clones into type-2

clones which could be parametrised and then added to in future refine-

ments.

Decloning results in more modular specifications and thus allows us

to avoid replicating specifications. In situations where bugs are present

in the original artefact then these bugs will be present at all instances

where it is reused whether it is by copy-and-paste or by importing mod-

ules. A modular system that facilitates importing modules enables the

developer to only repair the original module whereas the copy-and-

paste approach means that all copied code must be mended. Clearly,

modular development is beneficial, however, there are some dangers

lurking when modules are imported/reused. For example, the devel-

oper must ensure that any software artefacts that are to be reused be-

have as expected and are free from bugs. If the developer does not abide

by this then the resultant system may not behave as expected.

Throughout this thesis, we proposed the theory of institutions as

a mathematically sound framework to incorporate Event-B into and

thus provide users of Event-B with access to an array of generic and

formalism-independent modularisation constructs through the use of

specification-building operators [40]. These specification-building oper-

161

6.5 decloning event-b specifications

1 spec State =
2 sort States
3 ops s1, s2, s3, s4 : States
4 end

5 spec State1 =
6 State with States 7→ TopLevel States,
7 s1 7→ TL Standby, s2 7→ TL Preparation,
8 s3 7→ TL Initiation, s4 7→ TL Ending
9 end

10 spec State2 =
11 State with States 7→ LowLevel TestingCF States,
12 s1 7→ LL Testing CF Untested,
13 s2 7→ LL Testing CF,
14 s3 7→ LL Testing CF KO,
15 s4 7→ LL Testing CF OK
16 end

Figure 6.4: Decloning the context clone that appeared on an intra and

inter project basis throughout the Hemodialysis Machine de-

velopments.

ators can be used to declone Event-B specifications. We illustrate this

with respect to context, machines and events in what follows.

6.5.1 decloning contexts

In Section 6.4.1, we established that context clones occurred frequently

throughout our corpus. In particular, there was one context that was

cloned four times throughout the developments of the Hemodialysis

machines. It describes a set of states and can be represented as an EVT-

specification as shown in Figure 6.4 (lines 1–4). We have illustrated how

two of the clones in the Hemodialysis development can be modularised

by instantiating two copies of this clone using the with specification-

building operator to rename their components.

After further investigation, we observed that this context was also a

clone of 11 others throughout our corpus.

162

6.5 decloning event-b specifications

1 spec AbstractMac =
2 sorts s1
3 ops o1
4 . p1
5 Events
6 Initialisation

7

.

.

.
8 end

9 spec ConcreteMac =
10 AbstractMac
11 then
12 sorts s2
13 ops o2
14 . p2
15 Events
16 Initialisation

17

.

.

.
18 end

Figure 6.5: This figure illustrates how superposition refinement be-

tween an abstract and a concrete specification can be repre-

sented using the then specification-building operator. Here

the two Initialisation events are merged as they have the

same name.

6.5.2 decloning machines

In Section 6.4.2, we observed that machine clones tend to occur through-

out refinement chains. This occurred quite frequently throughout the

refinement steps of the ATM machine. The specification-building oper-

ators allow us to avoid respecification during refinement steps by using

the then operator. Figure 6.5 shows how an abstract machine can be

included in a more concrete machine that exhibits superposition refine-

ment. In this scenario, any events with the same name are merged.

6.5.3 decloning events

Our results show that event clones occurred frequently throughout our

corpus. For example in one of the machines of the DepSatSpec Event-

B specification (Altitude and Orbit Control System), the same event

that contained nine sentences and three parameters was cloned (type-1)

three times. These three events refined the same abstract event and the

superposition refinement that was added was exactly the same in all

163

6.6 threats to validity

1 spec EventSpec =
2 DataSpec
3 then
4 Events
5 Event AocsMgrEvent =̂ordinary
6 any MoveTo, branch, unit
7 when ActiveMgr = AocsMgr
8 Cursor 6= 0
9 MoveTo ∈ N

10 branch ∈ BRANCHES
11 unit ∈ UNITS
12 thenAct Cursor := MoveTo
13 HW Simulation Receive Command Assertion Br Status
14 := bool(UnitMgr Units Br Status(unit 7→branch) = BrStatus Locked)
15 HW Simulation Receive Command Assertion BrId := branch
16 HW Simulation Receive Command Assertion UnId := unit
17 end

18 spec CombineEventSpec =
19 EventSpec with AocsMgr Event 7→ Call HW Simulation Get Sensor Data and
20 EventSpec with AocsMgr Event 7→ Call HW Simulation Spurious LOA Error and
21 EventSpec with AocsMgr Event 7→ Call HW Simulation Receive Command
22 end

Figure 6.6: Decloning the events in the DepSatSpec Event-B specifica-

tion using specification-building operators.

three cases. This Type-1 cloning could have been avoided by specifying

the event once and using the specification-building operators (with, and)

to combine three versions of the event specification. This is illustrated

in Figure 6.6.

6.6 threats to validity

One feature of our work is the creation of a corpus of Event-B projects,

and our division of this set into smaller and larger projects. The se-

lection poses a threat to conclusion validity, since we are dealing with a

heterogeneous group of projects, and there is a risk that the differences

in metrics are due to other factors not measured here, such as hetero-

geneity in terms of the domain of application, e.g. railway, health-care,

control systems, algorithms, etc.

Our analysis of the projects is conducted based on the metrics that we

have defined and measured. While these metrics corresponded to ma-

164

6.6 threats to validity

jor syntactic categories in Event-B and have clear analogies with similar

constructs in programming languages, there is a threat to construct va-

lidity here. In particular, further studies would be required to establish

the predictive value, if any, of these metrics.

Similarly, in adapting the definition of code clones to Event-B we

made a number of decisions on what should be measured and the de-

gree of matching involved; altering these could yield different results.

Our measurement of type-3 clones was based on sentence sequences

and the in-order anonymisation of variables: a more general technique

could produce more clone-pairs, at the cost of a considerable increase

in combinatorial matches.

Since our analysis was based on processing the XML files generated

by Rodin, we have a high degree of confidence that the measurements

are accurate, and do not pose a threat to the internal validity of our re-

sults. However, in three of the Event-B projects (ch3 press, FindP G and

FindP P2) the corresponding .bps files, which hold information about

the proofs, were empty. Thus these projects have no automatic or in-

teractive proofs recorded even though proof obligations have been gen-

erated. We believe that these projects may have used an older version

of Rodin or a plugin that we do not have access to. One approach to

resolving this would be to remodel them using a current version of the

software with no extra plugins installed. We chose not to do this as we

wished to remain as impartial as possible with regard to the corpus that

we collected.

In total, there are 85 Event-B projects in our corpus, but it is possible

that this is not a large enough sample size to study. This causes a threat

to external validity in terms of the generalisability of our results. We

believe that assembling and maintaining a measured corpus of Event-B

programs is a worthwhile task in this regard.

165

6.7 summary and future work

6.7 summary and future work

This chapter expands on the clone study that was published in [42] by in-

cluding the measurement of the size of the state throughout our corpus

of Event-B specifications. We have also illustrated how Event-B speci-

fications can be decloned using the specification-building operators of

the theory of institutions.

Our work applies the existing software engineering approaches of cal-

culating metrics and detecting code clones to specifications written us-

ing the Event-B formal specification language. This exploratory study

is the first of its kind and has enabled us to provide and analyse the

metrics of a corpus of Event-B specifications. In this way, we provide a

benchmark against which other Event-B projects can gauge their com-

parative size and complexity level. Our empirical study supports the

claim that there is an underlying requirement for modularisation con-

structs in Event-B by evaluating code clones at the specification level.

Moreover, we have shown how the institutional framework can ac-

commodate the kinds of modularisation required to reduce the num-

ber of specification clones at context, machine and event level. This is

something that has not been achieved by any single Rodin plugin that

is listed in Table 2.1. Thus, the institutional framework that we have in-

corporated the Event-B language into, is in fact, more accommodating

to modularisation than the current state-of-the-art for Rodin.

166

Part IV

C O N C L U S I O N S

“Simplicity is prerequisite for reliability.”

– Edsger W. Dijkstra

7
C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter we discuss potential avenues for future research and summarise

our contributions.

7.1 future work

The research presented in this thesis has inspired a number of directions

for future research and these are discussed here.

With regard to metrics and specification clones, future work includes

the assessment of clone genealogies, particularly in the context of refine-

ment – i.e. how clones evolve throughout successive refinements. This

study would show us whether or not clones persist in the specification

after it has undergone a (series of) refinement step(s). We are also in-

terested in detecting non-typing invariant clones, this would allow us

to analyse data refinement clones using gluing invariants. The applica-

tion of this study to other formalisms used in the software verification

domain would allow us to compare them with the results obtained in

Chapter 6 and thus analyse specification clones in other specification

languages. This could potentially include incorporating this clone de-

tector into a general framework for detecting clones, such as PMD1.

To our knowledge, the Heterogeneous Toolset, Hets, is the only avail-

able tool support for integrating and providing modularisation support

for formalisms/logics defined as institutions. Of course, Hets does not

provide a way of “prototyping” an institution, as it has no explicit way

1 http://pmd.sourceforge.net/pmd-4.3.0/cpd.html

168

http://pmd.sourceforge.net/pmd-4.3.0/cpd.html

7.2 summary

of encoding the category of models or the satisfaction relationship of

a particular institution. In the future, developing a tool with this func-

tionality would make the mathematical theory of institutions more ac-

cessible to researchers and software developers. One possible approach

would be to use a theorem prover with theories for category theory that

could facilitate proving the validity of institutionally defined formalism-

s/logics such as Coq [56].

Our research has shed light on the benefits of the institution-theoretic

approach and future work consists of incorporating other such formalisms

into this framework in order to investigate their semantics and formally

define interoperability between them. Unified Theories of Program-

ming (UTP) provides a unified framework where program semantics

are represented as theories. The central concept of UTP is that of a “the-

ory supermarket” where one can shop for theories with confidence that

they will work together [46]. This framework is not as mature as the

theory of institutions, and is, in fact based in lattice theory [62]. We an-

ticipate that UTP can be encapsulated in terms of institutions in future

work.

7.2 summary

In a document describing the “Justifications for the Event-B Modelling

Notation”, Hallerstede remarked that the

“. . . duplication of concepts should be avoided and each single concept should

have a single and unambiguous interpretation” [58].

when referencing any extensions to the Event-B language and tool sup-

port. Unfortunately, this guideline has not been adhered to. This is

evidenced by the sheer volume of approaches to providing modularisa-

tion (Table 2.1) and interoperability (Table 2.2) features for the Event-B

specification language.

169

7.2 summary

We have proposed the theory of institutions as a framework that pro-

vides a unified set of modularisation constructs and gateways to inter-

operability for specification languages such as Event-B. In Chapter 3,

we incorporated Event-B into this framework by defining its institution,

EVT, [40, 41]. Until now, Event-B was not equipped with a formal se-

mantics and in Chapter 4, we formalised a translational semantics from

Event-B to EVT and bridged the gap between the Hets and Rodin soft-

ware ecosystems using the EB2EVT tool that we developed.

By representing Event-B specifications in the institutional setting of

EVT, we were able to define and analyse interoperability between Event-

B and UML. This interoperability was illustrated in Figure 1.1 and de-

scribed in Chapter 5. Not only has this work exhibited the flexibility of

our approach but it has enabled us to provide a mathematical under-

pinning for the UML-B plugin (Chapter 5).

In Chapter 6 we demonstrated the need for a unified set of modu-

larisation constructs in Event-B via our empirical study that identified

metrics and specification clones among a corpus of Event-B specifica-

tions. This has contributed a means for quantifying the size of Event-B

specifications and we anticipate that it can be used by others to gauge

the comparative size of their Event-B specifications. We also describe

how some of the current Event-B modularisation techniques can be sub-

sumed by the institution-theoretic specification-building operators, thus

administering a more unified approach to modularisation in Event-B.

Improvements are generally made to the Event-B language and its

tool support by building plugins for Rodin. Our research provides a

solid grounding for Event-B using the theory of institutions that allows

the developer to avoid building the nth plugin for Rodin in order to fa-

cilitate modularisation and interoperability for Event-B. Thus adhering

to Hallerstede’s guideline as quoted above.

170

7.2 summary

By defining EVT, we have provided a new perspective to the nor-

mally logic-oriented nature of institutions in the guise of an industrial-

strength specification language. Moreover, by incorporating Event-B

into this framework we were able to achieve our objectives and thus

provide a more generic and powerful way to write and reason about

(modular) Event-B specifications. Refinement is central to the Event-B

methodology and we examined it under specific headings at various

intervals throughout this thesis.

As described in Chapter 1, the formal methods landscape is abundant

with languages and tools that are very useful for proving the correctness

of software systems, however, the sheer volume of them is cause for con-

cern in terms of formalising correct interoperability between them. We

have shown that the theory of institutions provides a generic framework

within which all of these formalisms can be represented and their inter-

operability expressed in a provably correct way. Therefore, this thesis

acts as a manual for those wishing to incorporate formalisms similar to

Event-B, such as TLA+ for example, into the institutional framework.

171

A
D E C L O N I N G E V E N T- B S P E C I F I C AT I O N S U S I N G

S P E C I F I C AT I O N - B U I L D I N G O P E R AT O R S

In this appendix, we illustrate how the functionality of each of Rodin modular-

isation plugins that were discussed in Chapter 2 (Table 2.1) can be captured

using the specification-building operators and parametrisation made available

in the theory of institutions using EVT. The clones study that we presented

in Chapter 6 has motivated the need for modularisation constructs in Event-B.

Here, we not only provide a theoretical foundation for current modularisation

approaches in Event-B but we deliver a unified approach to modularisation in

Event-B and discuss refinement in this setting.

a.1 rodin plugins

Chapter 2 introduced a series of plugins that have been developed for

the Rodin Platform which offer modularisation features for Event-B spec-

ifications (Table 2.1). Here, we provide a brief overview of each of them

and illustrate by example how their functionality can be captured using

the institution-theoretic specification-building operators and parametri-

sation of specifications that were described in Section 2.4.1.

a.1.1 feature composition

The Feature Composition plugin was last modified in 2010 and works

on Rodin version 2.0. It was inspired by work on the composition of

Event-B models [95]. A feature is comprised of a machine and its (seen)

172

A.1 rodin plugins

contexts. The objective is to combine these features by fusing variables

and events. Variable fusion is achieved by concatenating the variable

lists of specific features whereas event fusion is a mechanism of merg-

ing events with the same name. Event fusion corresponds to conjoining

the guards of two events that share the same name and using parallel

composition to combine their actions. The Feature Composition plugin

prompts the user to select how features should be composed (i.e. which

components of an event (guards/actions) should be merged). It high-

lights naming conflicts and provides a way of making the inputs disjoint

before composition. This research led to the building of the prototype

Feature Modelling Tool where a feature model is represented using tree-

structured feature diagrams and is used to specify a product line [55].

There are some limitations of this plugin, in that, it is not possible to

compose variants or theorems [54] and it does not enforce correct event

fusion meaning that the user is required to ensure that the composition

is performed correctly [53].

We have thus identified three distinct functionalities of this plugin:

(1) composition of machines, (2) making machines disjoint before com-

position and (3) partial composition of machines. We can capture all of

these functionalities using specification-building operators as follows.

(1) The complete composition of machines (and/or contexts) simply

corresponds to the use of the and specification-building operator which

offers a generic way of combining specifications written over both the

same and different signatures. An example of this can be seen in Figure

A.1 where the specification mac3 is simply the composition of the speci-

fications for mac1 and mac2 (lines 1–3). If either of these machines see a

context then the context is combined in a similar fashion using the and

operator.

173

A.1 rodin plugins

1 spec mac3 =
2 mac1 and mac2
3 end

4 spec mac4 =
5 (mac1 with σ1) and
6 (mac2 with σ2)
7 end

8 spec mac3 =
9 mac1 and (mac2 hide via σ)

10 where
11 σ : Σhmac2 → Σmac2

12 σ = { Shmac2 7→ Smac2,
13 Ωhmac2 7→ Ωmac2,
14 Πhmac2 7→ Πmac2,
15 Ehmac2 = {e1, e2} 7→ Emac2 = {e1, e2, e3, e4},
16 Vhmac2 7→ Vmac2 }

17 end

Figure A.1: We use the and operator to completely combine features

given by the machines mac1 and mac2 (lines 1–3) which have

already been specified. We use and in combination with the

with operator to ensure that the specifications of mac1 and

mac2 are disjoint before they are merged (lines 4–7). We use

the hide via σ operator to partially compose the features

given by machines mac1 and mac2 (lines 8–17).

(2) We can make these specifications disjoint before composition if

we wish by using the with specification-building operator to rename

via signature morphism as shown on lines 4–7 of Figure A.1.

(3) The partial composition of machines (and/or contexts) corresponds

to and used in conjunction with hide via σ, where σ pulls out the re-

quired parts of the machine(s) (or context(s)). Suppose we wish to com-

bine mac1 with only two of the events (e1 and e2 for example) from

mac2 then we can define a signature morphism as shown in Figure A.1

(lines 8–17).

In EVT, events are composed by conjoining their guards and actions.

Only events that share the same name will be composed. If there are

events sharing the same name but the user does not wish for them to be

combined then it is possible to rename them using the with specification-

building operator before combining their respective machine specifica-

tion. Using the specification-building operators it is possible to compose

variants correctly and also ensure that proper event fusion takes place.

174

A.1 rodin plugins

a.1.2 generic instantiation

There are two different generic instantiation plugins, the first is by Uni-

versity of Southampton [108] and the second is by ETH Zurich and

Hitachi. The first appears to be more mature and is the only one avail-

able directly through the “Install new Software” option in the Rodin

Platform. It was last updated in 2015 and is compatible with Rodin 3.2.x.

The objective is to enable the reuse of generic developments in other

formal developments and to provide a mechanism for extending the

instantiation to a chain of refinements.

When using the Generic Instantiation plugin, an Event-B model is re-

ferred to as a “pattern”, i.e the pattern machine is the machine to be

instantiated in order to refine the “problem” machine [108]. Multiple

instances can be created from the same pattern to fit a specific prob-

lem. Instantiation is achieved by parametrising contexts and using the

concept of a “sharing context” to allow a context be seen by several

machines. The tool generates extra proof obligations to be proven to

ensure that the instantiation of the pattern is a valid one and that if the

instantiated machine refines an existing model that this is a valid refine-

ment. The current problem and instance are linked via refinement and

once the proof obligations have been carried out successfully then the

rest of the pattern refinement chain can be instantiated.

Using this plugin, only user defined sets can be replaced so it is not

possible, for example, to replace Z, N or BOOL. Moreover, it is a re-

quirement that all sets and contexts be replaced ensuring that there are

no uninstantiated parameters. An instantiated machine and the corre-

sponding specification-building operator representation can be seen in

Figure A.2 (lines 1–11 and 12–17 respectively). We provide an illus-

tration of this same machine rewritten using parametrisation on lines

18–27 of Figure A.2. One of the main benefits of using specification-

175

A.1 rodin plugins

1 INSTANTIATED MACHINE maci
2 INSTANTIATES mac1 VIA ctx1
3 SEES ctx2 /* context containing
4 the instance properties */
5 REPLACE
6 SETS s1 := s2
7 CONSTANTS c1 := c2
8 RENAME
9 VARIABLES v1 := v2

10 EVENTS e1 := e2
11 END

12 spec maci =
13 ctx2 then
14 ((maci and ctx1)
15 with s1 7→ s2, c1 7→ c2,
16 v1 7→ v2, e1 7→ e2
17 end

18 spec macp[sort s1, ops c1, v1] =
19 ctx1 then
20 event e1 st =
21 ...
22 end

23 spec maci = =
24 ctx2 then
25 macp[mac1]
26 with s1 7→ s2, c1 7→ c2, v1 7→ v2, e1 7→ e2
27 end

Figure A.2: An instantiated machine obtained using the generic instan-

tiation plugin is shown on lines 1–11. It is represented using

specification-building operators on lines 12–17. Lines 18–27

use parametrisation to describe the same machine.

building operators here is that it is now possible to replace any sets that

a user wishes (including non-user defined sets such as Z, N or BOOL)

once the appropriate signature morphisms have been defined by the

user. The only functionality of this plugin that we cannot capture in the

institution-theoretic approach is the instantiation of event parameters as

these are not part of the EVT-signature.

a.1.3 model decomposition

The Model Decomposition plugin is based on the shared variable/shared

event approach that was first proposed by Abrial [5] and works for

Rodin version 3.x [110]. To use the plugin the user selects the machine

to be decomposed and defines the sub-components (machines and con-

texts) to be generated [109]. Then they select the style of decomposition

to use (shared variable (A-style) or shared event (B-style)) and can opt

176

A.1 rodin plugins

1 spec M1 =
2 (M hide via σ1)
3 with e3 7→ e3e
4 end

5 where σ1 = v1 7→ v1, v2 7→ v2, e1 7→ e1,
6 e2 7→ e2, e3 7→ e3

7 spec M2 =
8 (M hide via σ2)
9 with e2 7→ e2e

10 end

11 where σ2 = v2 7→ v2, v3 7→ v3, e2 7→ e2,
12 e3 7→ e3, e4 7→ e4

Figure A.3: Writing the shared variable style used in Figure 2.2 using

specification-building operators

to decompose the contexts in a similar fashion. These generated sub-

components can then be further refined.

The moment in development where decomposition takes place is im-

portant: decomposing early may yield an overly abstract sub-component

that cannot be refined without knowledge of the others; decomposing

late may mean that the already concrete model will not benefit from

the decomposition. In the shared event style, if the user has the Paral-

lel Composition plugin (which will be discussed later in Section A.1.5)

installed it is possible to recompose the sub-components.

We introduced the shared variable and shared event approaches in

Section 2.2.1. The shared variable method was illustrated by example

in Figure 2.2 and Figure A.3 recasts this example using specification-

building operators. Here, the specification-building operator hide via

is used to hide auxiliary signature items (variables and events in this

case) by means of the signature morphisms σ1 and σ2.

We can emulate the shared event style of decomposition in a similar

fashion and the further composition of the models using the shared

event (parallel) composition plugin which will be discussed in Section

A.1.5.

This plugin is quite restrictive in that it is not possible to refer to the

same element across sub-components. It is not possible to select which

invariants are allocated to each sub-component; currently, only those

177

A.1 rodin plugins

relating to variables of the sub-component are included but others can

be added as theorems.

a.1.4 pattern

The Pattern plugin works for Rodin 3.x, it provides “design patterns”

for Event-B in order to facilitate the reuse of an existing Event-B model

(pattern) in the current Event-B model (problem) [47]. This allows the

developer to avoid manual copying and to employ proof reuse. The plu-

gin pattern-matches at model level and patterns are added to the Rodin

database. The use case is that at some point during development the

developer realises that the current model closely matches one that they

have already completed as part of another project. Then they match

this pattern and can incorporate it into the current model by carrying

out some renamings. This allows the developer to avoid respecification

and re-proof, and it also means that the refinement of the problem is

generated by merging the pattern refinement with the problem.

The user must decide which guards and actions go together and these

are checked for syntactic similarity. The user must also ensure that no

unmatched event alters a matched variable. Both of these checks gener-

ate proof obligations which then have to be proven by the user. One of

the main difficulties with using this plugin is that it requires the user

to have an array of “patterns” already saved in the Rodin database. This

could be resolved by providing a library of frequently used patterns for

Rodin. The clone detection study that was presented in chapter 6 pro-

vides a mechanism by which a user could detect these generic patterns.

The fact that the refinement of the pattern is also included can be ad-

vantageous, but this is unnecessary if the pattern is only matched in an

abstract machine and the refinement proceeds in a different way. In the

chapter 7 we identified the detection and analysis of clone genealogies

178

A.1 rodin plugins

1 spec mac1 =
2 pattern with σ
3 then
4 ...
5 end

Figure A.4: Incorporating a pattern machine in the current develop-

ment mac1

as future work, and this could also be used to investigate this plugin’s

approach in greater detail.

Figure A.4 illustrates, using specification-building operators, how to

utilise a pattern machine specification (pattern). Here with σ denotes

the renamings (via signature morphism) to be carried out. The specificat-

ion-building operators do not directly facilitate pattern matching; how-

ever, they offer a mechanism by which an already completed specifica-

tion can be included in a current one. They also provide the advantage

of not requiring the user to decide which guards and actions go together

because events with the same name are automatically fused. Our clone

detector could potentially be reused to match patterns with their clones

in this way.

a.1.5 shared event (parallel) composition

This plugin goes by the name “Parallel Composition” in the literature

and “Shared Event Composition” on the Rodin wiki. The composition

is based on that proposed by Butler [17]. It uses CSP-style parallel com-

position ‖ to compose machines through events. This is the precursor

to event refinement structures (ERS) which are sometimes referred to as

atomicity decomposition [43]. ERS are used to automatically generate

Event-B from control-flow and refinement diagrams. This plugin works

with Rodin 3.x. and its main limitation is that there are no facilities for

composing variants or theorems.

179

A.1 rodin plugins

1 spec mac3 =
2 (mac1 with σ1) and (mac1 with σ2)
3 where
4 σ1 = {e1 7→ e3}
5 σ2 = {e2 7→ e3}

Figure A.5: Shared Event Composition using the specification-building

operators

In order to compose the events of a machine (presentation) in EVT

we simply rename the events to be composed so that they share the

same name and then include all machines to be composed into the same

specification. The CASL notion of “same name, same thing” means that

any like-named events will be fused by default. Figure A.5 shows how

to compose the machines mac1 and mac2 by merging the events e1 in

mac1 and e2 in mac2. By renaming both of the events to e3 we merge

them in the combined machine mac3. Of course, one must be careful

to ensure that there are no other events in the final machine called e3

that are not intended to be merged. This approach also enables us to

compose variants.

a.1.6 modularisation plugin

The modularisation plugin was inspired by the modularisation approach

to decomposition in Event-B which was outlined in Section 2.2.1. Here,

modules split up an Event-B component (machine/context) and are paired

with an interface defining the conditions for incorporating one module

into another [67]. Module interfaces are a new type of Event-B component

that list the operations contained in the module. These are similar to ma-

chines but they may not specify events. The events of a machine which

imports an interface can see the visible constants, sets and axioms, call

the imported operations, and the interface variables and invariants are

added to the machine. The imported interface variables can be referred

180

A.1 rodin plugins

to by invariants, guards and actions but may not be directly updated

by an action. Although similar to the shared variable approach this

method is less restrictive, as invariants can be included in the module

interface.

This plugin provides a mechanism for modularity in Event-B but

there are a large number of different features that the user needs to

utilise and it is unclear how a model developed using these constructs

might be translated into/combined with a different formalism (or even

with a different plugin).

This plugin is a special case of shared variable decomposition which

is expressed using the specification-building operators in Figure A.3.

The plugin provides further structures such as interfaces and modules

but, by using the specification-building operators, these extra features

are not necessary to achieve this kind of modularisation.

a.1.7 xevent-b

This is a new plugin that was released for Rodin in 2017. It provides text

editors for Event-B contexts and machines. With regards to modularisa-

tion, it provides a way of combining machines called machine inclusion1.

Figure A.6 illustrates how the plugin text editors look accompanied

by a version of the same specification written using the specification-

building operators. In fact, this particular example (cars on a bridge

taken from [3]) is fully described in Appendix B using specification-

building operators in EVT. From the example shown in Figure A.6, it is

clear that the synchronises keyword corresponds to the application of

a signature morphism to the event names, i.e.

ML out.Initialisation 7→ Car m1 SNSR.Initialisation

1 http://wiki.event-b.org/index.php/XEvent-B

181

http://wiki.event-b.org/index.php/XEvent-B

A.1 rodin plugins

1 MACHINE Car m1 SNSR
2 includes Sensor m0 SNSR as ML out IL out
3 · · ·
4 EVENTS
5 Initialisation
6 synchronises ML out.INITIALISATION
7 synchronises IL out.INITIALISATION
8 · · ·
9 END

1 spec Car m1 SNSR =
2 (Sensor m0 SNSR with σ1)
3 and (Sensor m0 SNSR with σ2)
4 then
5 · · ·
6 end

Figure A.6: Representing the functionality of the XEvent-B plugin using

specification-building operators.

a.1.8 related plugins

We have identified a further two Rodin plugins that are relevant to this

discussion but that do not fall directly under the heading of modularisa-

tion plugins. These are the Theory Extension and Rename Refactoring

plugins.

1. Theory Extension

This plugin facilitates the addition of new data types, operators and

axioms (“theories”) for use in multiple independent Event-B develop-

ments. This is easily achieved in EVT or even by specifying a new

data type in FOPEQ and using the and or then specification-building

operator (with the comorphism from FOPEQ to EVT applied whenever

necessary) to make this new data-type available for use in other devel-

opments.

2. Rename Refactory

This Rename Refactory plugin also goes by the name “Refactoring Frame-

work”2. The Rename Refactory plugin works on Rodin 3.x and facilitates

the renaming of variables, parameters, carrier sets, constants, events and

other labelled elements (invariants, axioms, guards, etc).

2 http://wiki.event-b.org/index.php/Refactoring_Framework

182

http://wiki.event-b.org/index.php/Refactoring_Framework

A.1 rodin plugins

This plugin pushes renamings through to the proof obligation level

so that proofs do not need to be redone. The last modification to this

plugin was in 2014. Although this particular plugin is very good at

renaming, it doesn’t offer much in terms of increasing the modularity

of the Event-B formalism. We included in it our discussion here because

it offers a very useful feature for Event-B users and our objective is

to show that its functionality can also be captured using specification-

building operators.

It is easy to see that the functionality of this plugin can be expressed

by using the with specification-building operator which facilitates the

application of a signature morphism to rename signature items (sorts

represented as carrier sets, operations, predicates, variables and events).

However, with will not enable us to rename event parameters or labels

as these are not part of an EVT signature.

a.1.9 rodin compatabilities

The Rodin Platform version compatibility of each of these plugins is sum-

marised in Table A.1. The majority of this data was obtained from the

Rodin wiki3. In any case where this information for a particular plugin

was not available here we looked to the literature. From this table it

is clear to see that most of these plugins work with recent versions of

Rodin. The Feature Composition, Generic Instantiation and Modularisa-

tion plugins are the only ones not explicitly available for Rodin 3.x.x at

the time of writing.

3 http://wiki.event-b.org/index.php/Rodin_Platform_3.2.0_External_Plug-ins

183

http://wiki.event-b.org/index.php/Rodin_Platform_3.2.0_External_Plug-ins

A.2 refinement as a modularisation technique

Plugin Name Rodin Version Compatibility

Feature Composition 2.0

Generic Instantiation (Soton) 3.2.x

Model Decomposition 3.x.x

Pattern 3.x.x

Shared Event Composition 3.x.x

Modularisation Plugin 2.x.x

XEvent-B 3.3

Theory Extension 3.1.x

Rename Refactoring 3.x.x

Table A.1: Table summarising the latest version of the Rodin Platform

that each of the identified plugins is compatible with.

a.2 refinement as a modularisation technique

Refinement bears some similarity to the “divide and conquer” approach

advocated by modularisation in the sense that the system is divided into

simpler pieces that will be incrementally added to each other in further

refinement steps. However, the specification remains monolithic and

this approach does not facilitate the development of a system by devel-

opers working in parallel which is a major advantage of modularity in

software engineering.

Refinement in Event-B facilitates the carrying of proofs from the ab-

stract machine in order to assist the provers in proving more complex

proof obligations which may be encountered in the concrete machine

[6]. As described in Section 2.1.1, there are two primary types of refine-

ment in Event-B: data refinement and superposition refinement. During

data refinement, the user must supply gluing invariant to relate the prop-

184

A.2 refinement as a modularisation technique

erties of the abstract machine to their counterparts in the concrete ma-

chine. Any such gluing invariant must be true upon Initialisation

of both machines and be preserved by all events. A comprehensive

behavioural semantics for refinement in Event-B in terms of CSP refine-

ment can be found in [106]. Superposition refinement occurs when new

sentences are added to the machine in such a way that they are super-

imposed onto their abstract components. This amounts to adding new

events, invariants or new sentences to events such as guards or actions.

Rodin generates a number of refinement-specific proof obligations as de-

scribed in Section 2.1.2 which ensure that the refinement steps taken are

valid ones.

Refinement in Institution Theory is captured using model-class in-

clusion as discussed in Chapter 3. The central rule being that the model-

class of a concrete specification, C, must be a subset of the model-class

of its corresponding abstract specification, A [100]. In this way, the con-

crete specification should only exhibit behaviours that were possible in

the abstract case (provided that the signatures of C and A are the same).

In the case where the signatures are different, we apply this check for

model-class inclusion alongside the model reduct. The model reduct

is used to restrict the model-class of the concrete specification to only

those models that appear in the model-class of the abstract specification.

Figure A.7 illustrates how institution-theoretic parametrisation can

be used to represent data refinement between the abstract and refined

traffic light example that was written in EVT in Figures 3.5 and 3.6.

In Event-B, data refinement was achieved using gluing invariants, here

the hide via specification-building operator alongside parametrisation

corresponds to these gluing invariants.

lines 1–7 : The specification AbsLight defines a single abstract traffic

light, it takes a specification over the same signature as TwoBools

(originally defined in Chapter 3) as a parameter (between the square

185

A.2 refinement as a modularisation technique

brackets on line 1). Two events are added that can refer to ele-

ments of the parameter specification given (TwoBools). It is possi-

ble to write either a specification name or a full specification as a

parameter. As this is the definition of AbsLight we call the parame-

ter specification on line 1 the formal parameter. When we instantiate

it later we will supply an actual parameter. The axioms (predicates)

of the actual parameter must imply those of the formal parameter

that was supplied when the specification was defined.

lines 8–14 : This is a specification for a traffic light system with two

lights. Notice that on lines 9 and 12 we provide the actual param-

eter for the specification for each instantiation of AbsLight and

these must have the same signature as that of the formal param-

eter specification on line 1. A parameter that does not meet this

requirement is not valid [100].

lines 15–18 : This is the specification of a refined light that uses colours

instead of boolean flags. Line 16 takes a parametrised AbsLight

specification with the specification TwoColours as a parameter. The

hide via specification-building operator essentially describes the

refinement relation between TwoColours and TwoBools by includ-

ing the signature morphism between them. In this way we can

treat TwoColours as a specification over same signature as TwoBools

so it can be passed as a valid parameter in order to instantiate a

copy of AbsLight. Line 17 uses with to rename the events appro-

priately.

lines 19–23 : This is the TwoColours specification.

With regard to superposition refinement, the CASL notion of “same

name, same thing” ensures that all like-named events are merged thus

supplying a means for achieving superposition refinement in the insti-

tutional setting.

186

A.3 discussion

1 spec AbsLight[sort Bool, ops i go, u go : Bool, . i go 6= u go] =
2 event go =
3 when u go = false
4 thenAct i go = true
5 event stop =
6 thenAct i go = false
7 end

8 spec AbsTwoLights =
9 AbsLight[TwoBools]

10 with i go 7→ peds go, u go 7→ cars go, go 7→ set pedsgo, stop 7→ set pedsstop
11 and
12 AbsLight[TwoBools]
13 with i go 7→ cars go, u go 7→ peds go, go 7→ set carsgo, stop 7→ set carsstop
14 end

15 spec Reflight =
16 AbsLight[TwoColours hide via Bool 7→ Colour, true 7→ green, false 7→ red,
17 i go 7→ i col, u go 7→ u col]
18 with go 7→ set green, stop 7→ set red
19 end

20 spec TwoColours =
21 sort Colour
22 ops i col, u col, green, red:Colour
23 . i col 6= u col
24 end

Figure A.7: A parametrised version of the simple traffic light system

that was illustrated in Figure 2.1.

a.3 discussion

The identified approaches and plugins offer improvements to the Rodin

Platform in order to facilitate modular development in Event-B although

none of them directly enhance the Event-B formal specification lan-

guage itself. The use of specification-building operators and parametri-

sation from the theory of institutions offers a more mathematically grou-

nded and uniform approach to increasing the modularity of the Event-B

formal specification language. This approach is facilitated through the

use of EVT which is our institution for Event-B [40, 41]. The main con-

tribution of this appendix is that we have shown that all of the plugins

described in Table 2.1 can be expressed (and some even improved) us-

ing these techniques. Thus, the theory of institutions and our definition

187

A.3 discussion

of EVT has resulted in a more generic approach to modularisation in

Event-B.

We have identified refinement as a modularisation technique in Event-

B, although it is generally viewed as a program development technique

in other programming paradigms, and shown how it can be captured

using institution-theoretic parametrisation and the specification-building

operators [48]. A language for refinement, which is an extension to

CASL and is based on the concept of constructors, has been introduced

and we intend to apply it to the EVT-specifications that are presented

throughout this thesis as future work [23].

188

B
M AT H E M AT I C A L N O TAT I O N A N D S O F T WA R E

A RT E FA C T S

In this appendix, we briefly summarise the mathematical notation that we have

used throughout this thesis. We also describe the software artefacts that were

constructed as part of this project.

b.1 mathematical notation

The Event-B mathematical language at the base of the three-layer model

illustrated in Figure 4.1 is set theory. We use this set-theoretic language

throughout this thesis and we have summarised the symbols that we

have used in Table B.1.

b.2 institutions

The institutions referenced throughout this thesis are summarised

below with the page number of their definition.

FOPEQ The Institution for First-Order Predicate Logic with

Equality . 28

EVT The Institution for Event-B built on FOPEQ 41

ACT The Institution for Actions. .104

UML The Institution for UML State Machines 103

189

B.3 institution comorphisms and semi-morphisms

Symbol Description

7→ The maplet symbol is used to represent an ordered

pair.

{x | P(x)} Set comprehension : For some predicate P, this is the

set of all x such that P(x) holds.

C Domain restriction operator.

−C Domain anti-restriction operator.

v Refinement.

dom Function to access the domain of a function.

℘ Power Set.

Table B.1: Summary of the mathematical notation used throughout this

thesis.

b.3 institution comorphisms and semi-morphisms

The institution comorphisms and semi-morphisms referenced

throughout this thesis are summarised below with the page number of

their definition.

ρ : FOPEQ→ EVT Comorphism between FOPEQ and EVT 60

ρ : UML→ EVT Comorphism between UML and EVT 114

ρBASE : FOPEQ→ ACT Comorphism between FOPEQ and ACT 113

b.4 software artefacts

The software artefacts that resulted from this thesis can be found on our

github page at https://github.com/mariefarrell/phdartefacts.git.

This repository is comprised of a number of folders and we summarise

their contents below.

190

https://github.com/mariefarrell/phdartefacts.git

B.4 software artefacts

b.4.1 clonedetector

The clone detector repository contains the suite of Python3 programs

that we used to analyse our corpus of Event-B specifications in Chapter

6. In what follows, assume that the directory you want to process is

called ‘DIR’.

eventb.py: contains the data structures for Event B machines, contexts

events etc. It is not runnable.

bumparser.py: parses a .bum/.buc file and represents it using the eventb

classes. It is run by typing:

python3 bumparser.py DIR

metrics.py: reads in the .bum/.buc files and prints out their metrics

(one line per context/machine/event). It is run by typing:

python3 metrics.py DIR

tokeniser.py: tokenises the sentences (guards, actions etc.) and can

also do anonymisation. It is run by typing:

python3 tokeniser.py -anon DIR

The -anon switch anonymises the variable names. The -inv, -init

and -context/-event switches can be used as in lcs compare be-

low.

lcs compare.py: is the non-commutative clone detector. It is run by

typing:

python3 lcs compare DIR

By default, this groups on machines and the optional switches are:

-event: Group on events.

-context: Group on contexts.

191

B.4 software artefacts

-init Include Initialisation events. By default we exclude these

as all Initialisation events assign variables to values and

thus are all clones of each other to some degree.

-inv Include invariants and variants. At the machine level this in-

cludes the machine invariants and variants, whereas at event

level this includes the all machine invariants and the variant

is only included for non-ordinary events.

micropatterns.py: looks for micropatterns i.e. complete macines/con-

texts/events (with > 2 axiom/action sentences) that occur multiple

times. It can be run by typing:

python3 micropatterns.py -anon -event DIR

b.4.2 eb2evt

The EB2EVT translational semantics parser consists of four Haskell pro-

grams.

FOPEQ.hs: corresponds to the FOPEQ interface in Figure 4.3.

Syntax.hs: contains the abstract data types for the various components

of an Event-B specification. This corresponds to the Event-B syntax

shown in Figure 4.2.

Semantics.hs: encodes the semantic functions as described in Figures

4.7, 4.8, 4.9 and 4.10.

ParseEb.hs: parses the Event-B specification and generates the corre-

sponding EVT-specifications. This can be run by typing the fol-

lowing command into ghci, once the file has been loaded:

parseDirectory "DIR"

192

B.4 software artefacts

b.4.3 evthets

This folder contains the Hets prototype of EVT. A number of utility files

are included such as Keywords.hs, ParseEVT.hs, StaticAnalysis.hs,

SymbolParser.hs, ATC.der.hs and AS.der.hs. These contain abstract

data types describing the abstract syntax of EVT-specifications and pro-

visions for parsing and statically analysing these specifications. EVT-

signatures and signature morphisms are defined in SignEVT.hs. In

Hets, every institution is represented as a ‘logic’ (Logic.hs) and co-

morphisms can be defined between them (Comorphisms.hs). We have

utilised the Hets implementation of the CASL institution for the FOPEQ

components of our implementation of EVT.

b.4.4 specs

This folder contains a set of modular EVT-specifications that were used

to investigate how the specification-building operators can be applied

to EVT-specifications.

193

B I B L I O G R A P H Y

[1] About the Unified Modeling Language Specification Version 2.5. url:

http://www.omg.org/spec/UML/2.5/ (visited on 10/27/2017).

[2] Jean-Raymond Abrial. Event model decomposition. Tech. rep. De-

partment of Computer Science, ETH Zurich, 2009.

[3] Jean-Raymond Abrial. Modeling in Event-B: System and Software

Engineering. 1st. Cambridge University Press, 2010.

[4] Jean-Raymond Abrial. “From Z to B and then Event-B: Assigning

Proofs to Meaningful Programs”. In: 10th International Conference

on Integrated Formal Methods, IFM. Vol. 7940. LNCS. 2013, pp. 1–

15.

[5] Jean-Raymond Abrial and Stefan Hallerstede. “Refinement, De-

composition, and Instantiation of Discrete Models: Application

to Event-B”. In: Fundamenta Informaticae 77.1-2 (2007), pp. 1–28.

[6] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai

Son Hoang, Farhad Mehta, and Laurent Voisin. “Rodin: an open

toolset for modelling and reasoning in Event-B”. In: International

Journal on Software Tools for Technology Transfer 12.6 (2010), pp. 447–

466.

[7] Grigoris Antoniou and Frank Van Harmelen. “Web Ontology

Language: OWL”. In: Handbook on ontologies. Springer, 2004, pp. 67–

92.

[8] Ralph-Johan Back. “Refinement calculus, part II: Parallel and re-

active programs”. In: Stepwise Refinement of Distributed Systems

Models, Formalisms, Correctness. Vol. 430. LNCS. 1990, pp. 67–93.

194

http://www.omg.org/spec/UML/2.5/

bibliography

[9] Ralph-Johan Back and Kaisa Sere. “Stepwise refinement of action

systems”. In: International Conference on Mathematics of Program

Construction, MPC. Vol. 375. LNCS. 1989, pp. 115–138.

[10] Ralph-Johan Back and Joakim von Wright. “Refinement calcu-

lus, part I: Sequential nondeterministic programs”. In: Stepwise

Refinement of Distributed Systems Models, Formalisms, Correctness.

Vol. 430. LNCS. 1989, pp. 42–66.

[11] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A

systematic Introduction. Springer, 1998.

[12] Michael Barnett, K. Rustan M. Leino, and Wolfram Schulte. “The

Spec# programming system: An overview”. In: International Work-

shop on Construction and Analysis of Safe, Secure, and Interoperable

Smart Devices, CASSIS. Vol. 3362. LNCS. 2004, pp. 49–69.

[13] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Ja-

cobs, and K. Rustan M. Leino. “Boogie: A modular reusable veri-

fier for object-oriented programs”. In: 4th International Symposium

on Formal Methods for Components and Objects, FMCO. Vol. 4111.

LNCS. 2005, pp. 364–387.

[14] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna,

and Lorraine Bier. “Clone detection using abstract syntax trees”.

In: 14th International Conference on Software Maintenance, ICSM.

IEEE. 1998, pp. 368–377.

[15] Rod M. Burstall and Joseph A. Goguen. “Putting theories to-

gether to make specifications”. In: 5th International Joint Confer-

ence on Artificial intelligence, IJCAI. Vol. 2. Morgan Kaufmann.

1977, pp. 1045–1058.

[16] Rod M. Burstall and Joseph A. Goguen. “The semantics of Clear,

a specification language”. In: Abstract Software Specifications. Vol. 86.

LNCS. 1980, pp. 292–332.

195

bibliography

[17] Michael Butler. “Decomposition Structures for Event-B”. In: 7th

International Conference on Integrated Formal Methods, IFM. Vol. 5423.

LNCS. 2009, pp. 20–38.

[18] Michael Butler and Issam Maamria. “Practical theory extension

in Event-B”. In: Theories of Programming and Formal Methods. Vol. 8051.

LNCS. 2013, pp. 67–81.

[19] Néstor Catano, K. Rustan M. Leino, and Víctor Rivera. “The

EventB2Dafny Rodin plug-in”. In: 2nd Workshop on Developing

Tools as Plug-ins, TOPI. IEEE. 2012, pp. 49–54.

[20] Néstor Catano and Víctor Rivera. “EventB2Java: A code genera-

tor for Event-B”. In: 8th International NASA Formal Methods Sym-

posium, NFM. Vol. 9690. LNCS. 2016, pp. 166–171.

[21] Néstor Cataño, Tim Wahls, Camilo Rueda, Víctor Rivera, and

Danni Yu. “Translating B machines to JML specifications”. In:

27th ACM Symposium on Applied Computing, SAC. ACM. 2012,

pp. 1271–1277.

[22] Robert N Charette. “Why software fails”. In: IEEE spectrum 42.9

(2005), p. 36.

[23] Mihai Codescu, Till Mossakowski, Donald Sannella, and Andrzej

Tarlecki. “Specification refinements: Calculi, tools, and applica-

tions”. In: Science of Computer Programming 144.Supplement C

(2017), pp. 1 –49.

[24] Kriangsak Damchoom. “An incremental refinement approach to

a development of a flash-based file system in Event-B”. PhD the-

sis. University of Southampton, 2010.

[25] Kriangsak Damchoom, Michael Butler, and Jean-Raymond Abrial.

“Modelling and proof of a tree-structured file system in Event-B

and Rodin”. In: 10th International Conference on Formal Engineering

Methods, ICFEM 2008. Vol. 5256. LNCS. 2008, pp. 25–44.

196

bibliography

[26] Răzvan Diaconescu. “Grothendieck institutions”. In: Applied Cat-

egorical Structures 10.4 (2002), pp. 383–402.

[27] Răzvan Diaconescu. Institution-Independent Model Theory. Springer,

2008.

[28] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ report: The

language, proof techniques, and methodologies for object-oriented alge-

braic specification. Vol. 6. World Scientific, 1998.

[29] Răzvan Diaconescu and Kokichi Futatsugi. “Logical foundations

of CafeOBJ”. In: Theoretical Computer Science 285.2 (2002), pp. 289–

318.

[30] Edsger W. Dijkstra. “Guarded commands, nondeterminacy and

formal derivation of programs”. In: Communications of the ACM

18.8 (1975), pp. 453–457.

[31] Edsger W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.

[32] Ionut Dinca, Florentin Ipate, Laurentiu Mierla, and Alin Stefanescu.

“Learn and test for Event-B–a Rodin plugin”. In: 3rd International

Conference on Abstract State Machines, Alloy, B, VDM, and Z, ABZ.

Vol. 7316. LNCS. 2012, pp. 361–364.

[33] Andrew Edmunds and Michael Butler. “Tasking Event-B: An ex-

tension to Event-B for generating concurrent code”. In: PLACES.

2011.

[34] Hartmut Ehrig, Bernd Mahr, Ingo Classen, and Fernando Orejas.

“Introduction to algebraic specification. Part 1: Formal methods

for software development”. In: The Computer Journal 35.5 (1992),

pp. 460–467.

[35] Manuel Fähndrich. “Static Verification for Code Contracts.” In:

17th International Symposium on Static Analysis, SAS. Vol. 6337.

LNCS. 2010, pp. 2–5.

197

bibliography

[36] Marie Farrell. “Using the Theory of Institutions to Integrate Soft-

ware Models via Refinement”. In: PhD Symposium at the 12th In-

ternational Conference on Integrated Formal Methods,PhD-iFM. 2016.

[37] Marie Farrell, Rosemary Monahan, and James F. Power. “An Ap-

proach to Integrating Software Models via Refinement (Poster)”.

In: ACM womENcourage. 2014.

[38] Marie Farrell, Rosemary Monahan, and James F. Power. “A Logi-

cal Framework for Integrating Software Models via Refinement”.

In: British Colloquium for Theoretical Computer Science, BCTCS. 2016.

[39] Marie Farrell, Rosemary Monahan, and James F. Power. “Mod-

ularising and Promoting Interoperability for Event-B Specifica-

tions using Institution Theory (Poster)”. In: 28th European Sum-

mer School in Logic, Language and Information, ESSLLI. 2016, p. 74.

[40] Marie Farrell, Rosemary Monahan, and James F. Power. “Pro-

viding a Semantics and Modularisation Constructs for Event-B

using Institutions”. In: 23rd International Workshop on Algebraic

Development Techniques, WADT. 2016, pp. 18–19.

[41] Marie Farrell, Rosemary Monahan, and James F. Power. “An In-

stitution for Event-B”. In: Recent Trends in Algebraic Development

Techniques. WADT 2016. Vol. 10644. LNCS. 2017, pp. 104–119.

[42] Marie Farrell, Rosemary Monahan, and James F. Power. “Speci-

fication Clones: An empirical study of the structure of Event-B

specifications”. In: 15th International Conference on Software Engi-

neering and Formal Methods, SEFM. Vol. 10469. LNCS. 2017, pp. 152–

167.

[43] Asieh Salehi Fathabadi, Michael Butler, and Abdolbaghi Reza-

zadeh. “Language and tool support for event refinement struc-

tures in Event-B”. In: Formal Aspects of Computing 27.3 (2015),

pp. 499–523.

198

bibliography

[44] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff.

“Isabelle/Circus: A Process Specification and Verification Envi-

ronment.” In: 4th International Conference on Verified Software: The-

ories, Tools, Experiments , VSTTE. Vol. 7152. LNCS. 2012, pp. 243–

260.

[45] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3—where

programs meet provers”. In: Programming Languages and Systems:

22nd European Symposium on Programming, ESOP. Vol. 7792. LNCS.

2013, pp. 125–128.

[46] John Fitzgerald, Peter Gorm Larsen, and Jim Woodcock. “Foun-

dations for model-based engineering of systems of systems”. In:

Complex Systems Design & Management. Springer, 2014, pp. 1–19.

[47] Andreas Fürst. “Design patterns in Event-B and their tool sup-

port”. MA thesis. Department of Computer Science, ETH Zurich,

2009.

[48] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals

of Software Engineering. Prentice-Hall, 2002.

[49] Joseph A. Goguen. “A categorical manifesto”. In: Mathematical

Structures in Computer Science 1.1 (1991), pp. 49–67.

[50] Joseph A. Goguen and Rod M. Burstall. “Introducing institu-

tions”. In: Workshop on Logic of Programs. Vol. 164. LNCS. 1983,

pp. 221–256.

[51] Joseph A. Goguen and Rod M. Burstall. “A study in the founda-

tions of programming methodology: Specifications, institutions,

charters and parchments”. In: Category Theory and Computer Pro-

gramming. Vol. 240. LNCS. 1986, pp. 313–333.

[52] Joseph A. Goguen and Rod M. Burstall. “Institutions: abstract

model theory for specification and programming”. In: Journal of

the ACM 39.1 (1992), pp. 95–146.

199

bibliography

[53] Ali Gondal, Michael Poppleton, and Michael Butler. “Compos-

ing Event-B Specifications-Case-Study Experience”. In: 10th Inter-

national Conference on Software Composition, SC. Vol. 6708. LNCS.

2011, pp. 100–115.

[54] Ali Gondal, Michael Poppleton, and Colin Snook. “Feature composition-

towards product lines of Event-B models”. In: 3rd International

Workshop on Model-Driven Product Line Engineering, MDPLE. Vol. 6698.

LNCS. 2009, pp. 18–25.

[55] Ali Gondal, Michael Poppleton, Michael Butler, and Colin Snook.

“Feature-Oriented Modelling Using Event-B”. In: International Con-

ference on Software Engineering Theory and Practice, SETP. ISRST,

2010, pp. 100–106.

[56] Jason Gross, Adam Chlipala, and David I Spivak. “Experience

implementing a performant category-theory library in Coq”. In:

5th International Conference on Interactive Theorem Proving. Vol. 8558.

LNCS. 2014, pp. 275–291.

[57] Martin Große-Rhode. Semantic Integration of Heterogeneous Soft-

ware Specifications. Springer, 2013.

[58] Stefan Hallerstede. “Justifications for the Event-B modelling no-

tation”. In: 7th International Conference of B Users. Vol. 4355. LNCS.

2007, pp. 49–63.

[59] Stefan Hallerstede. “On the purpose of Event-B proof obliga-

tions”. In: 1st International Conference on Abstract State Machines,

B and Z, ABZ. Vol. 5238. LNCS. 2008, pp. 125–138.

[60] Thai Son Hoang, Alexei Iliasov, Renato Silva, and Wei Wei. “A

survey on Event-B decomposition”. In: Electronic Communications

of the EASST 46 (2011), pp. 1–15.

200

bibliography

[61] Thai Son Hoang, Colin Snook, Lukas Ladenberger, and Michael

Butler. “Validating the Requirements and Design of a Hemodial-

ysis Machine Using iUML-B, BMotion Studio, and Co-Simulation”.

In: 5th International Conference on Abstract State Machines, Alloy, B,

TLA, VDM, and Z. Vol. 9675. LNCS. 2016, pp. 360–375.

[62] Charles Anthony Richard Hoare. “Unified Theories of Program-

ming”. In: Mathematical Methods in Program Development. Vol. 158.

NATO ASI Series (Series F: Computer and Systems Sciences).

1997, pp. 313–367.

[63] Charles Antony Richard Hoare. “An axiomatic basis for com-

puter programming”. In: Communications of the ACM 12.10 (1969),

pp. 576–580.

[64] Charles Antony Richard Hoare. “Communicating sequential pro-

cesses”. In: The Origin of Concurrent Programming. Springer, 1978,

pp. 413–443.

[65] Gérard Huet and Gordon Plotkin. Logical frameworks. Cambridge

University Press, 1991.

[66] Michael Huth and Mark Ryan. Logic in Computer Science: Mod-

elling and reasoning about systems. Cambridge University Press,

2004.

[67] Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander Ro-

manovsky, Kimmo Varpaaniemi, Dubravka Ilic, and Timo Lat-

vala. “Supporting Reuse in Event-B Development: Modularisa-

tion Approach”. In: 2nd International Conference on Abstract State

Machines, Alloy, B and Z, ABZ. Vol. 5977. LNCS. 2010, pp. 174–

188.

[68] Cliff B. Jones. Systematic software development using VDM. Vol. 2.

Prentice-Hall, 1990.

201

bibliography

[69] Yonit Kesten and Amir Pnueli. “Modularization and abstraction:

The keys to practical formal verification”. In: 40th International

Symposium on Mathematical Foundations of Computer Science, MFCS.

Vol. 9234. LNCS. 1998, pp. 54–71.

[70] Tibor Kiss and Katalin Tünde Jánosi-Rancz. “Developing railway

interlocking systems with session types and Event-B”. In: 11th

International Symposium on Applied Computational Intelligence and

Informatics, SACI. IEEE. 2016, pp. 93–98.

[71] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Ke-

ung, Pearl Brereton, Stuart Charters, Shirley Gibbs, and Amnart

Pohthong. “Robust statistical methods for empirical software en-

gineering”. In: Empirical Software Engineering 22 (2 2017), pp. 579–

630.

[72] Anneke G. Kleppe, Jos B. Warmer, and Wim Bast. MDA Ex-

plained: The model driven architecture: practice and promise. Addison-

Wesley, 2003.

[73] Alexander Knapp, Till Mossakowski, Markus Roggenbach, and

Martin Glauer. “An Institution for Simple UML State Machines”.

In: 18th International Conference on Fundamental Approaches to Soft-

ware Engineering, FASE. Vol. 9033. LNCS. 2015, pp. 3–18.

[74] Ch. Suresh Kumar, D. Raghu, and P. Ratna Kumar. “A Domes-

tic Case Studies Probability to Overcome Software Failures”. In:

Journal of Telematics and Informatics 1.1 (2013), pp. 20–25.

[75] Linas Laibinis, Elena Troubitsyna, Alexei Iliasov, and Romanovsky

Alexander. “Formal Development of the BepiColombo Pilot”. In:

DEPLOY Planery Meeting, November 2008, Turku.

[76] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools

for Hardware and Software Engineers. Addison-Wesley, 2002.

202

bibliography

[77] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. “Prelimi-

nary Design of JML: A Behavioural Interface Specification Lan-

guage for Java”. In: ACM SIGSOFT Software Engineering Notes

31.3 (2006), pp. 1–38.

[78] K. Rustan M. Leino. “Dafny: An automatic program verifier for

functional correctness”. In: 16th International Conference on Logic

for Programming Artificial Intelligence and Reasoning, LPAR. Vol. 6355.

LNCS. 2010, pp. 348–370.

[79] K. Rustan M. Leino, Peter Müller, and Jan Smans. “Verification

of Concurrent Programs with Chalice.” In: Foundations of Security

Analysis and Design, FOSAD. Vol. 5705. LNCS. 2009, pp. 195–222.

[80] Atif Mashkoor. “The hemodialysis machine case study”. In: 5th

International Conference on Abstract State Machines, Alloy, B, TLA,

VDM, and Z. Vol. 9675. 2016, pp. 329–343.

[81] David Mentré, Claude Marché, Jean-Christophe Filliâtre, and Masashi

Asuka. “Discharging proof obligations from Atelier B using mul-

tiple automated provers”. In: 3rd International Conference on Ab-

stract State Machines, Alloy, B, VDM, and Z, ABZ. Vol. 7316. LNCS.

2012, pp. 238–251.

[82] Dominique Méry and Neeraj Kumar Singh. “Automatic Code

Generation from event-B Models”. In: 2nd Symposium on Informa-

tion and Communication Technology, SoICT. ACM, 2011, pp. 179–

188.

[83] Dominique Méry and Neeraj Kumar Singh. “Functional behavior

of a cardiac pacing system”. In: International Journal of Discrete

Event Control Systems 1.2 (2011), pp. 129–149.

[84] José Meseguer. “General logics”. In: Studies in Logic and the Foun-

dations of Mathematics 129 (1989), pp. 275–329.

203

bibliography

[85] Cornelis Adam Middelburg. “VVSL: A language for structured

VDM specifications”. In: Formal Aspects of Computing 1 (1989),

pp. 115–135.

[86] Carroll Morgan, Ken Robinson, and Paul Gardiner. On the Refine-

ment Calculus. Springer, 1988.

[87] Joseph Morris. “A Theoretical Basis for Stepwise Refinement and

the Programming Calculus”. In: Science of Computer Programming

9.3 (1987), pp. 287–306.

[88] Till Mossakowski, Răzvan Diaconescu, and Andrzej Tarlecki. “What

is a logic translation?” In: Logica Universalis 3.1 (2009), pp. 95–

124.

[89] Till Mossakowski, Christian Maeder, and Klaus Lüttich. “The

Heterogeneous Tool Set, Hets”. In: 13th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems,

TACAS. Vol. 4424. LNCS. 2007, pp. 519–522.

[90] Peter D. Mosses, ed. CASL Reference Manual. Vol. 2960. LNCS.

2004.

[91] Liam O’Reilly. “Structured Specification with Processes and Data”.

PhD thesis. Department of Computer Science, Swansea Univer-

sity, 2012.

[92] Marta Olszewska and Kaisa Sere. “Specification Metrics for Event-

B Developments”. In: International Conference on Quality Engineer-

ing in Software Technology, ICSQ. 2010.

[93] Sergey Ostroumov and Leonidas Tsiopoulos. “VHDL code gener-

ation from formal Event-B models”. In: 14th Euromicro Conference

on Digital System Design, DSD. IEEE. 2011, pp. 127–134.

204

bibliography

[94] M. Pitu, D. Grijincu, P. Li, A. Saleem, Rosemary Monahan, and

Diarmuid P. O’Donoghue. “Arís: Analogical Reasoning for reuse

of Implementation & Specification.” In: 4th International Workshop

on Artificial Intelligence for Formal Methods, AI4FM, HW-MACS-TR-

0100. 2013, pp. 13–16.

[95] Michael Poppleton. “The composition of Event-B models”. In: 1st

International Conference on Abstract State Machines, B and Z, ABZ.

Vol. 5238. LNCS. 2008, pp. 209–222.

[96] Steve Reeves and David Streader. “General Refinement, Part One:

Interfaces, Determinism and Special Refinement”. In: Electronic

Notes in Theoretical Computer Science 214 (2008), pp. 277–307.

[97] Steve Reeves and David Streader. “General Refinement, Part two:

Flexible Refinement”. In: Electronic Notes in Theoretical Computer

Science 214 (2008), pp. 309–329.

[98] Chanchal K. Roy, Minhaz F. Zibran, and Rainer Koschke. “The

vision of software clone management: past, present, and future”.

In: Software Maintenance, Reengineering and Reverse Engineering.

IEEE, 2014, pp. 18–33.

[99] David E. Rydeheard and Rod M. Burstall. Computational Category

Theory. Vol. 152. Prentice-Hall, 1988.

[100] Donald Sanella and Andezej Tarlecki. Foundations of Algebraic

Specification and Formal Software Development. Springer, 2012.

[101] Donald Sannella and Andrzej Tarlecki. “Specifications in an ar-

bitrary institution”. In: Information and computation 76.2-3 (1988),

pp. 165–210.

[102] Matthias Schmalz. The Logic of Event-B. Technical Report 698. De-

partment of Computer Science, ETH Zurich, 2010.

205

bibliography

[103] Matthias Schmalz. “Term Rewriting in Logics of Partial Func-

tions.” In: 19th International Conference on Formal Engineering Meth-

ods, ICFEM. Vol. 6991. LNCS. 2011, pp. 633–650.

[104] Steve Schneider. The B-method: An introduction. Palgrave, 2001.

[105] Steve Schneider, Helen Treharne, and Heike Wehrheim. “A CSP

approach to control in Event-B”. In: 8th International Conference on

Integrated Formal Methods, IFM. Vol. 6396. LNCS. 2010, pp. 260–

274.

[106] Steve Schneider, Helen Treharne, and Heike Wehrheim. “The be-

havioural semantics of Event-B refinement”. In: Formal Aspects of

Computing 26 (2014), pp. 251–280.

[107] Dana S. Scott and Christopher Strachey. Toward a mathematical se-

mantics for computer languages. Vol. 1. Technical Monograph PRG-

6, Oxford University Computing Laboratory, Programming Re-

search Group, 1971.

[108] Renato Silva and Michael Butler. “Supporting reuse of Event-

B developments through generic instantiation”. In: 11th Interna-

tional Conference on Formal Engineering Methods, ICFEM. Vol. 5885.

LNCS. 2009, pp. 466–484.

[109] Renato Silva and Michael Butler. “Shared Event Composition/De-

composition in Event-B”. In: 9th International Symposium on For-

mal Methods for Components and Objects, FMCO. Vol. 6957. LNCS.

2012, pp. 122–141.

[110] Renato Silva, Carine Pascal, Thai Son Hoang, and Michael But-

ler. “Decomposition tool for Event-B”. In: Software: Practice and

Experience 41.2 (2011), pp. 199–208.

[111] Neeraj Kumar Singh. “EB2ALL: an automatic code generation

tool”. In: Using Event-B for Critical Device Software Systems. Springer,

2013, pp. 105–141.

206

bibliography

[112] Neeraj Kumar Singh. Using Event-B for Critical Device Software

Systems. Springer, 2013.

[113] Graeme Smith. The Object-Z Specification Language. Springer, 2012.

[114] Colin Snook and Michael Butler. “UML-B: Formal modeling and

design aided by UML”. In: ACM Trans. on Software Engineering

and Methodology 15.1 (2006), pp. 92–122.

[115] Colin Snook and Michael Butler. “UML-B and Event-B: an inte-

gration of languages and tools”. In: IASTED International Confer-

ence on Software Engineering, SE. 2008, pp. 336–341.

[116] Alfred Tarski. “The semantic conception of truth: and the founda-

tions of semantics”. In: Philosophy and Phenomenological Research

4.3 (1944), pp. 341–376.

[117] Alfred Tarski. “On Some Fundamental Concepts of Metamathe-

matics.” In: Logic, Semantics and Metamathematics. Edited and trans-

lated by JH Woodger (1956).

[118] Simon Thompson. Haskell: the craft of functional programming. Vol. 3.

Addison-Wesley, 1999.

[119] Qi Wang and Tim Wahls. “Translating Event-B machines to database

applications”. In: 12th International Conference on Software Engi-

neering and Formal Methods, SEFM. Vol. 8702. LNCS. 2014, pp. 265–

270.

[120] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Lan-

guage: getting your models ready for MDA. Addison-Wesley, 2003.

[121] John B. Wordsworth. Software Development with Z: a Practical Ap-

proach to Formal Methods in Software Engineering. Addison-Wesley,

1992.

[122] Steve Wright. “Automatic generation of C from Event-B”. In:

Workshop on integration of model-based formal methods and tools. 2009,

p. 14.

207

	Contents
	List of Figures
	List of Tables
	Abstract
	Publications
	Acknowledgments
	Declaration
	Introduction and Background Material
	1 Introduction
	1.1 Motivation
	1.2 Thesis Statement
	1.3 Summary of Contributions

	2 Background Material
	2.1 Event-B
	2.1.1 Example: Traffic-Lights System
	2.1.2 Tool Support and Proof

	2.2 Limitations of Event-B
	2.2.1 Modularisation as Decomposition in Event-B
	2.2.2 Interoperability and Heterogeneity

	2.3 The Theory of Institutions
	2.3.1 Category-Theoretic Prerequisites
	2.3.2 Institutions
	2.3.3 Example: FOPEQ - the Institution for First-Order Predicate Logic with Equality
	2.3.4 Refinement

	2.4 Addressing the Limitations of Event-B
	2.4.1 Institution-Theoretic Modularisation Constructs
	2.4.2 Institution-Theoretic Interoperability

	2.5 Summary

	Defining A Semantics
	3 Defining EVT - An Institution for Event-B
	3.1 Introducing EVT
	3.2 SignEVT, the Category of EVT-signatures
	3.3 The Functor SenEVT, yielding EVT-sentences
	3.4 The Functor ModEVT, yielding EVT-models
	3.5 The Satisfaction Relation for EVT
	3.6 Relating FOPEQ and EVT
	3.7 Pushouts and Amalgamation
	3.8 Pragmatics of Specification Building in EVT
	3.9 Writing Specifications in the EVT Institution
	3.9.1 Representing Refinement Explicitly

	3.10 Summary

	4 Formalising A Translational Semantics for Event-B
	4.1 Introduction
	4.2 Syntax of Event-B
	4.3 A FOPEQ Interface
	4.4 Extracting the Signature
	4.5 Defining the Semantics of Event-B Superstructure Sentences
	4.6 Defining the Semantics of Event-B Infrastructure Sentences
	4.7 Implementing the Translational Semantics
	4.8 Applying the Translational Semantics to an Example
	4.8.1 The Abstract Model
	4.8.2 The First Refinement
	4.8.3 The Second Refinement

	4.9 Summary

	Interoperability
	5 An Institution-Theoretic Foundation for the Translation from UML to Event-B
	5.1 Introduction
	5.2 UML - The Institution for Simple UML State Machines
	5.2.1 ACT - The Underlying Action Institution
	5.2.2 The Behavioural State Machine Institution
	5.2.3 The Protocol State Machine Institution
	5.2.4 The State Machine Tripod of Institutions

	5.3 Translating from UML to EVT via an Institution Comorphism
	5.3.1 Comparing EVT and UML
	5.3.2 Relating the Action Institution and FOPEQ
	5.3.3 Relating the UML Institution and EVT

	5.4 Example
	5.4.1 Preservation of the Satisfaction Condition
	5.4.2 Analysing a Selection of Potential Edge Cases

	5.5 The Comorphism as a Foundation for UML-B
	5.5.1 Refinement

	5.6 Summary

	Modularisation
	6 Specification Clones: An empirical study of the structure of Event-B specifications
	6.1 Background and Introduction
	6.1.1 Clones in Code and Specifications
	6.1.2 Modularisation of Event-B Specifications

	6.2 Analysing a Corpus of Event-B specifications: Metrics and Refinement
	6.2.1 Quantifying Specification Size
	6.2.2 Metrics for Event-B Specifications
	6.2.3 Quantifying Refinements

	6.3 Detecting Specification Clones
	6.4 Results of the Clone Analysis
	6.4.1 Context Clones
	6.4.2 Machine Clones
	6.4.3 Event Clones

	6.5 Decloning Event-B Specifications
	6.5.1 Decloning Contexts
	6.5.2 Decloning Machines
	6.5.3 Decloning Events

	6.6 Threats to Validity
	6.7 Summary and Future Work

	Conclusions
	7 Conclusions and Future Work
	7.1 Future Work
	7.2 Summary

	A Decloning Event-B Specifications using Specification-Building Operators
	A.1 Rodin plugins
	A.1.1 Feature Composition
	A.1.2 Generic Instantiation
	A.1.3 Model Decomposition
	A.1.4 Pattern
	A.1.5 Shared Event (Parallel) Composition
	A.1.6 Modularisation Plugin
	A.1.7 XEvent-B
	A.1.8 Related Plugins
	A.1.9 Rodin Compatabilities

	A.2 Refinement as a Modularisation Technique
	A.3 Discussion

	B Mathematical Notation and Software Artefacts
	B.1 Mathematical Notation
	Institutions
	B.2 Institutions
	Institution Comorphisms and Semi-Morphisms
	B.3 Institution Comorphisms and Semi-Morphisms
	B.4 Software Artefacts
	B.4.1 clonedetector
	B.4.2 EB2EVT
	B.4.3 EVTHets
	B.4.4 Specs

	Bibliography

