
Building Specifications
in the Event-B Institution

Marie Farrell, Rosemary Monahan and James F. Power

CPS Seminar @ University of Southampton
June 29, 2023

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 1 / 48



Building Specifications in the Event-B Institution

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 2 / 48



Building Specifications in the Event-B Institution

marie.farrell@manchester.ac.uk

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 3 / 48



Disclaimer:
There will be equations and commutative diagrams on these slides but I
will only superficially explain them. All of the details and proofs are in the
paper.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 4 / 48



Formal Methods for Critical Systems
What if I told you?
I modelled and verified critical systems using a language with no formal
semantics. Further, there is no native support to make the code
modular in this language and translations to other languages are not
systematic.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 5 / 48



M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 6 / 48



Think About It...

Formal Semantics
Proof obligations give a list of properties to prove for a given model.
Not a semantics for the language itself.

Modularisation
Lots of plugins but no direct language support.

Interoperability
Lots of plugins but no way of checking that the semantics is preserved.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 7 / 48



Forget everything that you know
about Event-B!

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 8 / 48



Building Specifications in the Event-B Institution

Event-B?

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 9 / 48



Event-B Formal Specification Language

CONTEXT ctx
EXTENDS ctx0
SETS S
CONSTANTS c
AXIOMS

A(s,c)

MACHINE m REFINES m0
SEES ctx

VARIABLES x
INVARIANTS I(x)
VARIANT n(x)
EVENTS

INITIALISATION, e1, . . . ,en

Event ei =̂ status
any p
when G(x,p)
with W(x,p)
then BA(x,p,x')

end

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 10 / 48



Building Specifications in the Event-B Institution

Institution?

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 11 / 48



Institutions: Some Maths

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 12 / 48



An institution INS for a given formalism

Vocabulary: a category Sign whose objects are called signatures and whose
arrows are called signature morphisms.

Syntax: a functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences
for each signature Σ and a function Sen(σ) : Sen(Σ) → Sen(Σ′)
for each signature morphism σ : Σ → Σ′.

Semantics: a functor Mod : Signop → Cat giving a category Mod(Σ) of
Σ-models for each signature Σ and a functor
Mod(σ) : Mod(Σ′) → Mod(Σ) for each signature morphism
σ : Σ → Σ′.

Satisfaction: for every signature Σ, a satisfaction relation |=INS,Σ between
Σ-models and Σ-sentences.
An institution must uphold the satisfaction condition: for any
signature morphism σ : Σ → Σ′ and translations Mod(σ) of
models and Sen(σ) of sentences we have for any φ ∈ Sen(Σ) and
M′ ∈| Mod(Σ′) |.

M′ |=INS,Σ′ Sen(σ)(φ) ⇔ Mod(σ)(M′) |=INS,Σ φ

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 13 / 48



An institution INS for a given formalism

Vocabulary: a category Sign whose objects are called signatures and whose
arrows are called signature morphisms.

Syntax: a functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences
for each signature Σ and a function Sen(σ) : Sen(Σ) → Sen(Σ′)
for each signature morphism σ : Σ → Σ′.

Semantics: a functor Mod : Signop → Cat giving a category Mod(Σ) of
Σ-models for each signature Σ and a functor
Mod(σ) : Mod(Σ′) → Mod(Σ) for each signature morphism
σ : Σ → Σ′.

Satisfaction: for every signature Σ, a satisfaction relation |=INS,Σ between
Σ-models and Σ-sentences.
An institution must uphold the satisfaction condition: for any
signature morphism σ : Σ → Σ′ and translations Mod(σ) of
models and Sen(σ) of sentences we have for any φ ∈ Sen(Σ) and
M′ ∈| Mod(Σ′) |.

M′ |=INS,Σ′ Sen(σ)(φ) ⇔ Mod(σ)(M′) |=INS,Σ φ

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 13 / 48



An institution INS for a given formalism

Vocabulary: a category Sign whose objects are called signatures and whose
arrows are called signature morphisms.

Syntax: a functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences
for each signature Σ and a function Sen(σ) : Sen(Σ) → Sen(Σ′)
for each signature morphism σ : Σ → Σ′.

Semantics: a functor Mod : Signop → Cat giving a category Mod(Σ) of
Σ-models for each signature Σ and a functor
Mod(σ) : Mod(Σ′) → Mod(Σ) for each signature morphism
σ : Σ → Σ′.

Satisfaction: for every signature Σ, a satisfaction relation |=INS,Σ between
Σ-models and Σ-sentences.
An institution must uphold the satisfaction condition: for any
signature morphism σ : Σ → Σ′ and translations Mod(σ) of
models and Sen(σ) of sentences we have for any φ ∈ Sen(Σ) and
M′ ∈| Mod(Σ′) |.

M′ |=INS,Σ′ Sen(σ)(φ) ⇔ Mod(σ)(M′) |=INS,Σ φ

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 13 / 48



An institution INS for a given formalism

Vocabulary: a category Sign whose objects are called signatures and whose
arrows are called signature morphisms.

Syntax: a functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences
for each signature Σ and a function Sen(σ) : Sen(Σ) → Sen(Σ′)
for each signature morphism σ : Σ → Σ′.

Semantics: a functor Mod : Signop → Cat giving a category Mod(Σ) of
Σ-models for each signature Σ and a functor
Mod(σ) : Mod(Σ′) → Mod(Σ) for each signature morphism
σ : Σ → Σ′.

Satisfaction: for every signature Σ, a satisfaction relation |=INS,Σ between
Σ-models and Σ-sentences.
An institution must uphold the satisfaction condition: for any
signature morphism σ : Σ → Σ′ and translations Mod(σ) of
models and Sen(σ) of sentences we have for any φ ∈ Sen(Σ) and
M′ ∈| Mod(Σ′) |.

M′ |=INS,Σ′ Sen(σ)(φ) ⇔ Mod(σ)(M′) |=INS,Σ φ

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 13 / 48



Σ1

Σ2

σ

Sen(Σ1) Sen′(ρSign(Σ1))

Sen(Σ2) Sen′(ρSign(Σ2))

ρSen
Σ1

Sen(σ) Sen′(ρSign(σ))

ρSen
Σ2

Mod′(ρSign(Σ2)) Mod(Σ2)

Mod′(ρSign(Σ2)) Mod(Σ1)

ρMod
Σ2

Mod′(ρSign(σ)) Mod(σ)

ρMod
Σ1

“truth is invariant under change of notation”

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 14 / 48



First-Order Predicate Logic with Equality (FOPEQ)

Signatures: ΣFOPEQ = 〈S,Ω,Π〉
S is a set of sort names
Ω is a set of operation names
Π is a set of predicate names indexed by arity.

Sentences: closed first-order formulae using ∧,∨,¬ ,⇒,⇔,∃,∀ and the
logical constants true and false.

Models: consist of a carrier set |A|s for each sort name s ∈ S, a
function fA : |A|s1 × · · · × |A|sn → |A|s for each operation
name f ∈ Ωs1...sn,s and a relation pA ⊆ |A|s1 × · · · × |A|sn for
each predicate name p ∈ Πs1···sn .

Satisfaction Relation: usual satisfaction of first-order sentences by
first-order structures.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 15 / 48



First-Order Predicate Logic with Equality (FOPEQ)

Signatures: ΣFOPEQ = 〈S,Ω,Π〉
S is a set of sort names
Ω is a set of operation names
Π is a set of predicate names indexed by arity.

Sentences: closed first-order formulae using ∧,∨,¬ ,⇒,⇔, ∃, ∀ and the
logical constants true and false.

Models: consist of a carrier set |A|s for each sort name s ∈ S, a
function fA : |A|s1 × · · · × |A|sn → |A|s for each operation
name f ∈ Ωs1...sn,s and a relation pA ⊆ |A|s1 × · · · × |A|sn for
each predicate name p ∈ Πs1···sn .

Satisfaction Relation: usual satisfaction of first-order sentences by
first-order structures.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 15 / 48



First-Order Predicate Logic with Equality (FOPEQ)

Signatures: ΣFOPEQ = 〈S,Ω,Π〉
S is a set of sort names
Ω is a set of operation names
Π is a set of predicate names indexed by arity.

Sentences: closed first-order formulae using ∧,∨,¬ ,⇒,⇔, ∃, ∀ and the
logical constants true and false.

Models: consist of a carrier set |A|s for each sort name s ∈ S, a
function fA : |A|s1 × · · · × |A|sn → |A|s for each operation
name f ∈ Ωs1...sn,s and a relation pA ⊆ |A|s1 × · · · × |A|sn for
each predicate name p ∈ Πs1···sn .

Satisfaction Relation: usual satisfaction of first-order sentences by
first-order structures.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 15 / 48



First-Order Predicate Logic with Equality (FOPEQ)

Signatures: ΣFOPEQ = 〈S,Ω,Π〉
S is a set of sort names
Ω is a set of operation names
Π is a set of predicate names indexed by arity.

Sentences: closed first-order formulae using ∧,∨,¬ ,⇒,⇔, ∃, ∀ and the
logical constants true and false.

Models: consist of a carrier set |A|s for each sort name s ∈ S, a
function fA : |A|s1 × · · · × |A|sn → |A|s for each operation
name f ∈ Ωs1...sn,s and a relation pA ⊆ |A|s1 × · · · × |A|sn for
each predicate name p ∈ Πs1···sn .

Satisfaction Relation: usual satisfaction of first-order sentences by
first-order structures.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 15 / 48



Building Specifications in the Event-B Institution

Event-B Institution?

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 16 / 48



The Three-Layer Model

Event-B
Superstructure

refines, sees
EVT specification-
building operators

Event-B
Infrastructure

variables, invariants,
variants, events

EVT -sentences

Mathematical
Language

carrier sets, constants,
axioms, extends

FOPEQ-sentences
and specification-
building operators

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 17 / 48



The Three-Layer Model

Event-B
Superstructure

refines, sees
EVT specification-
building operators

Event-B
Infrastructure

variables, invariants,
variants, events

EVT -sentences

Mathematical
Language

carrier sets, constants,
axioms, extends

FOPEQ-sentences
and specification-
building operators

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 18 / 48



The FOPEQ Interface

FOPEQ Operations
F.and : Σ-formula∗ → Σ-formula
F.lt : Σ-term × Σ-term → Σ-formula
F.leq : Σ-term × Σ-term → Σ-formula
F.exists : VarName∗ × Σ-formula → Σ-formula
F.ι : VarName∗ → Σ-formula → Σ-formula

FOPEQ Functions
PΣ : LabelledPred → Σ-formula
TΣ : Expression → Σ-term
M : SetName∗ × ConstName∗ × LabelledPred∗ → |SignFOPEQ|

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 19 / 48



The Three-Layer Model

Event-B
Superstructure

refines, sees
EVT specification-
building operators

Event-B
Infrastructure

variables, invariants,
variants, events

EVT -sentences

Mathematical
Language

carrier sets, constants,
axioms, extends

FOPEQ-sentences
and specification-
building operators

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 20 / 48



What is EVT ?

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 21 / 48



EVT - The Institution for Event-B (Vocabulary)

Signatures: ΣEVT = 〈S,Ω,Π,E ,V 〉
S, Ω, Π from FOPEQ
E is a function from event names to their status.
V is a set of sort-indexed variable names.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 22 / 48



Signature Extraction

1 CONTEXT cd
2 CONSTANTS
3 d
4 AXIOMS
5 axm1: d ∈ N
6 axm2: d > 0
7 END

1 MACHINE m0
2 SEES cd
3 VARIABLES
4 n
5 INVARIANTS
6 inv1: n ∈ N
7 inv2: n ≤ d
8 EVENTS
9 Initialisation

10 then
11 act1: n := 0

12 Event ML out =̂ ordinary
13 when
14 grd1: n < d
15 then
16 act1: n := n + 1
17 Event ML in =̂ ordinary
18 when
19 grd1: n > 0
20 then
21 act1: n := n − 1
22 END

Signature
Σm1 = 〈 S, Ω, Π, E , V 〉

where
S = {N},
Ω = {0 : N, d : N},
Π = {>: N× N},
E = {(Init 7→ ordinary), (ML in 7→ ordinary), (ML out 7→ ordinary)},
V = {n:N}

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 23 / 48



EVT - The Institution for Event-B (Syntax)

Sentences:

1 MACHINE m REFINES a SEES ctx
2 VARIABLES x
3 INVARIANTS I(x)
4 VARIANT n(x)
5 EVENTS
6 Initialisation ordinary
7 then act-name: BA(x′)

8

.

.

.
9 Event ei =̂ convergent

10 any p
11 when guard-name: G(x, p)
12 with witness-name: W (x, p)
13 then act-name: BA(x, p, x′)

14

.

.

.
15 END

{〈e, I(x) ∧ I(x′)〉 | e ∈ dom(Σ.E)}

〈Init, BA(x′)〉

〈ei , n(x′) < n(x)〉

〈e, ∃ p · G(x, p) ∧ W (x, p) ∧ BA(x, p, x′)〉

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 24 / 48



EVT - The Institution for Event-B (Semantics)

Models: 〈A, L,R〉

A is a ΣFOPEQ-model.

L ⊆ StateA provides the states after the Init event.

R .e ⊆ StateA × StateA.

1 Event e =̂
2 when grd1: x < 2
3 then act1: x := x + 1
4 act2: y := false

Re =


{x 7→ 0, y 7→ false, x′ 7→ 1, y′ 7→ false},
{x 7→ 0, y 7→ true, x′ 7→ 1, y′ 7→ false},
{x 7→ 1, y 7→ false, x′ 7→ 2, y′ 7→ false},
{x 7→ 1, y 7→ true, x′ 7→ 2, y′ 7→ false}



M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 25 / 48



EVT - The Institution for Event-B (Satisfaction)

Satisfaction:
1 For any EVT -model 〈A, L,R〉 and EVT -sentence 〈e, φ(x , x ′)〉, where

e 6= Init:

〈A, L,R〉 |=Σ 〈e, φ(x , x ′)〉 ⇔ ∀〈s, s ′〉 ∈ R .e·A(s,s′) |=
Σ

(V ,V ′)
FOPEQ

φ(x , x ′)

2 For EVT -sentences of the form 〈Init, φ(x ′)〉:

〈A, L,R〉 |=Σ 〈Init, φ(x ′)〉 ⇔ ∀ s ′ ∈ L · A(s′) |=
Σ

(V ′)
FOPEQ

φ(x ′)

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 26 / 48



Building Specifications in the Event-B Institution

Building Specifications?

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 27 / 48



Specification-Building Operators
Operation Format Description

Translation SP1 with σ Renames the signature components of SP1 using the signature morphism
σ : ΣSP1

→ Σ′.
Sig [SP1 with σ] = Σ′

Mod [SP1 with σ] = {M ′ ∈ |Mod(Σ′)| | M ′|σ∈ Mod [SP1]}.

Sum SP1 and SP2 Combines the specifications SP1 and SP2.
SP1 and SP2 = (SP1 with ι) ∪ (SP2 with ι′)

where Sig [SP1] = Σ, Sig [SP2] = Σ′, ι : Σ ↪−→ Σ ∪ Σ′, ι′ : Σ′ ↪−→ Σ ∪ Σ′

Enrichment SP1 then … Extends the specification SP1 by adding new sentences after the then
specification-building operator. This operator can be used to represent
superposition refinement of Event-B specifications.

Hiding SP1 hide via σ Interprets a specification, SP1, as one restricted to the signature compo-
nents of another specified by the signature morphism σ : Σ → ΣSP1

.
Sig [SP1 hide via σ] = Σ
Mod [SP1 hide via σ] = { M|σ | M ∈ Mod [SP1]}.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 28 / 48



We Need Pushouts for Specification Building

Given two EVT -signature morphisms σ1 : Σ → Σ1 and σ2 : Σ → Σ2 a
pushout is a triple (Σ′, σ′1, σ

′
2) that satisfies the universal property: for all

triples (Σ′′, σ′′1 , σ
′′
2) there exists a unique morphism u : Σ′ → Σ′′ such that

the diagram below commutes.

Σ

Σ1

Σ′

Σ2

Σ′′

σ1

σ′
1 σ′

2

σ2

σ′′
1 σ′′

2u

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 29 / 48



Institutions Must Preserve Amalgamation for Specification
Building

R′.σ′(e) = {σ′(xi ) 7→ h′(ai )} ∈ R′

R1.σ1(e) = {{σ1(xi ) 7→ h1(ai )} ∈ R1 R2.σ2(e) = {σ2(xi ) 7→ h2(ai )} ∈ R2

R.e = {xi 7→ ai} ∈ R

Mod(σ′
1)

Mod(σ1) Mod(σ2)

Mod(σ′
2)

...proofs are in the paper

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 30 / 48



Building Specifications in the Event-B Institution
B : Machine → Env → |SpecEVT | #Build an EVT structured specification for one machine

B

u

www
v

machine m
refines a
sees ctx1, . . . , ctxn
mbody
end

}

���
~

ξ =

〈
Σ,



spec JmK over EVT =
# Include contexts using the comorphism ρ:
(Jctx1K and . . . and JctxnK) with ρ
#Sentences from the refined machine (if any):

(and AΣJmbodyKJaKξ)
then
SΣJmbodyK


〉

where Σ = ξJmK.

AΣ : MachineBody → EventName → Env →| SpecEVT |
#Extract any relevant specification from the refined (abstract) machine

AΣ

u

www
v

variables v1, . . . , vn
invariants i1, . . . , in
theorems t1, . . . , tn
variant n
events einit , e1, . . . , en

}

���
~

JaK ξ = IΣJi1K and . . . and IΣJinK
and RΣJe1KJaKξ and . . . and RΣJenKJaKξ

#Conjoin sentences from each event definition

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 31 / 48



Building Specifications in the Event-B Institution
RΣ : Event → EventName → Env →| SpecEVT | #Extract specification from one refined event

RΣ

u

www
v

event ec
status s
refines e1, . . . , en
ebody
end

}

���
~

JaK ξ =

let
Σa = ξJaK, #Signature of abstract machine
# Use Σh , σh to select only refined events:
Σh = 〈Σa.S, Σa.Ω, Σa.Π,

{Je1K, . . . , JenK} � Σa.E, Σa.V〉,
σh : Σh ↪→ Σa,
# Use σm to reassign refined event sentences to ec :
σm : Σh → Σ

σm =

〈
Σh.S ↪→ Σ.S, Σh.Ω ↪→ Σ.Ω,Σh.Π ↪→ Σ.Π,
Σh.E 7→ {Jec K} � Σ.E,
Σh.V ↪→ Σ.V

〉
in

(JaK hide via σh) with σm.

IΣ : LabelledPred → SenEVT (Σ) #Invariant sentences
IΣ JiK = {〈JeK, F.and(PΣJiK, F.ι(Σ.V )(PΣJiK))〉 | e ∈ dom(Σ.E)}

VΣ : Expression → SenEVT (Σ) #Variant can’t increase for non-ord. events
VΣ JnK = {〈JeK, F.lt(F.ι(Σ.V )(TΣJnK), TΣJnK)〉 | (e 7→ convergent) ∈ Σ.E}

∪ {〈JeK, F.leq(F.ι(Σ.V )(TΣJnK), TΣJnK)〉 | (e 7→ anticipated) ∈ Σ.E}

EΣ : InitEvent → SenEVT (Σ) #Initial event: get sentences from actions

EΣ

u

ww
v

event Initialisation
status ordinary
then act1, . . . , actn
end

}

��
~ = {〈Init, BA〉}

where
BA = F.and(PΣJact1K, . . . , PΣJactnK)

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 32 / 48



Building Specifications in the Event-B Institution

...it’s all in the paper.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 33 / 48



An Example: Cars On A Bridge

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 34 / 48



An Example: Cars On A Bridge

1 CONTEXT cd
2 CONSTANTS d
3 AXIOMS
4 axm1: d ∈ N
5 axm2: d > 0
6 END

7 MACHINE m0
8 SEES cd
9 VARIABLES n

10 INVARIANTS
11 inv1: n ∈ N
12 inv2: n ≤ d
13 EVENTS
14 Initialisation
15 then act1: n := 0
16 Event ML out =̂ ordinary
17 when grd1: n < d
18 then act1: n := n + 1
19 Event ML in =̂ ordinary
20 when grd1: n > 0
21 then act1: n := n − 1
22 END

1 spec cd =
2 sort N
3 ops d:N
4 . d > 0
5 end

6 spec m0 =
7 cd
8 then
9 ops n:N

10 . n ≤ d
11 EVENTS
12 Initialisation
13 thenAct n := 0
14 Event ML out =̂ ordinary
15 when n < d
16 thenAct n := n+1
17 Event ML in =̂ ordinary
18 when n > 0
19 thenAct n := n-1
20 end

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 35 / 48



An Example: Cars On A Bridge

1 spec m1 =
2 m0 and cd
3 then
4 ops a:N
5 b:N
6 c:N
7 . n = a + b + c
8 a = 0 ∨ c = 0
9 variant 2 ∗ a + b

10 EVENTS
11 Initialisation
12 thenAct a := 0
13 b := 0
14 c := 0
15 Event ML out =̂ ordinary
16 when a + b < d
17 c = 0
18 thenAct a := a+1

19 Event IL in =̂ convergent
20 when a > 0
21 thenAct a := a-1
22 b := b+1
23 Event IL out =̂ convergent
24 when 0 < b
25 a = 0
26 thenAct b := b-1
27 c := c+1
28 Event ML in =̂ ordinary
29 when c > 0
30 thenAct c := c-1
31 end

...more detail in the paper.
M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 36 / 48



So What?

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 37 / 48



Modularisation via Specification Building

1 spec datam0 =
2 cd then
3 ops n:N
4 . n ≤ d
5 EVENTS
6 Initialisation
7 thenAct n := 0
8 end

9 spec datam1 =
10 datam0 then
11 ops a, b, c : N
12 . n = a + b + c
13 a = 0 ∨ c = 0
14 variant 2∗a+b
15 EVENTS
16 Initialisation
17 thenAct a := 0
18 b := 0
19 c := 0
20 end

21 spec inout =
22 ops v1, v2 : N
23 EVENTS
24 Event out =̂ ordinary
25 when v1 = 0
26 thenAct v2 := v2 + 1
27 Event in =̂ ordinary
28 when v1 > 0
29 thenAct v1 := v1 + 1
30 end

31 spec m1 =
32 datam1 and m0 and
33 inout with {〈out, ordinary〉 7→ 〈ML out, ordinary〉,
34 〈in, ordinary〉 7→ 〈ML in, ordinary〉,
35 v1 7→ c, v2 7→ a} and
36 inout with {〈out, ordinary〉 7→ 〈IL out, convergent〉,
37 〈in, ordinary〉 7→ 〈IL in, convergent〉,
38 v1 7→ a, v2 7→ c}
39 then
40 EVENTS
41 Event ML out =̂ ordinary
42 when a + b < d
43 Event IL in =̂ convergent
44 thenAct b:= b + 1
45 Event IL out =̂ convergent
46 when 0 < b
47 thenAct b := b + 1
48 end

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 38 / 48



Modularisation via Specification Building: Shared Variable

1 spec M1 =
2 (M hide via σ1)
3 with { e3 7→ e3 e }
4 end
5 where σ1 = { v1 7→ v1, v2 7→ v2,
6 e1 7→ e1, e2 7→ e2,
7 e3 7→ e3 }

8 spec M2 =
9 (M hide via σ2)
10 with { e2 7→ e2 e }
11 end
12 where σ2 = { v2 7→ v2, v3 7→ v3,
13 e2 7→ e2, e3 7→ e3,
14 e4 7→ e4 }

...shared event and generic instantiation are covered in the paper.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 39 / 48



What About Refinement?

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 40 / 48



What About Refinement?

... we can do that too!

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 41 / 48



Refinement

1 Signatures are the same:

SPA v SPC ⇔ Mod(SPC) ⊆ Mod(SPA)

2 Signatures are different:

SPA v SPC ⇔ Mod(σ)(SPC) ⊆ Mod(SPA)

1 refinement REF0 : M0 to M1 =
2 ML in 7→ ML in, ML out 7→ ML out
3 end

4 refinement REF1A : M1 to M2 =
5 ML in 7→ ML in, ML out 7→ ML out1, IL in 7→ IL in, IL out 7→ IL out1
6 end

7 refinement REF1B : M1 to M2 =
8 ML in 7→ ML in, ML out 7→ ML out2, IL in 7→ IL in, IL out 7→ IL out2
9 end

..other interesting refinement examples are in the paper.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 42 / 48



Building Specifications in the Event-B Institution

Our Contributions:
1 A formal (translational) semantics for Event-B using the eb2evt

tool.

2 A standard approach to modularisation using specification-building
operators.

3 An explication of Event-B refinement in the context of the EVT
institution.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 43 / 48



Building Specifications in the Event-B Institution

Our Contributions:
1 A formal (translational) semantics for Event-B using the eb2evt

tool.
2 A standard approach to modularisation using specification-building

operators.

3 An explication of Event-B refinement in the context of the EVT
institution.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 43 / 48



Building Specifications in the Event-B Institution

Our Contributions:
1 A formal (translational) semantics for Event-B using the eb2evt

tool.
2 A standard approach to modularisation using specification-building

operators.
3 An explication of Event-B refinement in the context of the EVT

institution.
M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 43 / 48



Conclusions and Future Work

Provide access to stronger, more general modularisation for Event-B
without the need to modify the formalism itself.

Demonstrated how such modulrisation capabilities can be added to a
formal specification language using the theory of institutions.

Future work: examine how this approach can be applied to other
similar formal languages.

Future Work: incorporate our semantics specification-building
operators into Rodin using EB4EB and Theory Plugin.

Future Work: define institution morphisms to enable interoperability
with other formalisms.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 44 / 48



Conclusions and Future Work

Provide access to stronger, more general modularisation for Event-B
without the need to modify the formalism itself.

Demonstrated how such modulrisation capabilities can be added to a
formal specification language using the theory of institutions.

Future work: examine how this approach can be applied to other
similar formal languages.

Future Work: incorporate our semantics specification-building
operators into Rodin using EB4EB and Theory Plugin.

Future Work: define institution morphisms to enable interoperability
with other formalisms.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 44 / 48



Conclusions and Future Work

Provide access to stronger, more general modularisation for Event-B
without the need to modify the formalism itself.

Demonstrated how such modulrisation capabilities can be added to a
formal specification language using the theory of institutions.

Future work: examine how this approach can be applied to other
similar formal languages.

Future Work: incorporate our semantics specification-building
operators into Rodin using EB4EB and Theory Plugin.

Future Work: define institution morphisms to enable interoperability
with other formalisms.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 44 / 48



Conclusions and Future Work

Provide access to stronger, more general modularisation for Event-B
without the need to modify the formalism itself.

Demonstrated how such modulrisation capabilities can be added to a
formal specification language using the theory of institutions.

Future work: examine how this approach can be applied to other
similar formal languages.

Future Work: incorporate our semantics specification-building
operators into Rodin using EB4EB and Theory Plugin.

Future Work: define institution morphisms to enable interoperability
with other formalisms.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 44 / 48



Conclusions and Future Work

Provide access to stronger, more general modularisation for Event-B
without the need to modify the formalism itself.

Demonstrated how such modulrisation capabilities can be added to a
formal specification language using the theory of institutions.

Future work: examine how this approach can be applied to other
similar formal languages.

Future Work: incorporate our semantics specification-building
operators into Rodin using EB4EB and Theory Plugin.

Future Work: define institution morphisms to enable interoperability
with other formalisms.

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 44 / 48



Not in the paper...

UML-B

Event-B

Event-B and the Rodin Platform Institutions and Comorphisms

UML

EVT

UML-B Plugin
Translation

Institution
Comorphism

EB2EVT

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 45 / 48



Connecting Institutions: Institution Comorphism

An institution comorphism ρ : INS → INS′ is composed of:
A functor ρSign : Sign → Sign′.
A natural transformation ρSen : Sen → ρSign;Sen′, that is, for each
Σ ∈ |Sign|, a function ρSen

Σ : Sen(Σ) → Sen′(ρSign(Σ)).
A natural transformation ρMod : (ρSign)op ;Mod′ → Mod, that is, for
each Σ ∈ |Sign|, a functor ρMod

Σ : Mod′(ρSign(Σ)) → Mod(Σ).

An institution comorphism must ensure that for any signature Σ ∈ |Sign|,
the translations ρSen

Σ of sentences and ρMod
Σ of models preserve the

satisfaction relation, that is, for any ψ ∈ Sen(Σ) and
M ′ ∈ |Mod(ρSign(Σ))|:

ρMod
Σ (M ′) |=Σ ψ ⇔ M ′ |=′ρSign(Σ) ρ

Sen
Σ (ψ)

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 46 / 48



Questions?
marie.farrell@manchester.ac.uk

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 47 / 48



5TH WORKSHOP ON 

FORMAL METHODS 
FOR

 AUTONOMOUS SYSTEMS
Important Dates:
 Submission: 17th of August 2023  (AOE)
 Notification: 15th of September 2023
 Final Version due: 20th  of October 2023
 Workshop: 15th and 16th of November 
2023, hybrid format, at iFM 2023

 Submission Information:
 Vision Papers and Research Previews: 6 
pgs EPTCS
 Regular Papers and Experience Reports: 
15 pgs EPTCS

 Topics of Interest include:
 Applicable, tool-supported Formal Methods 
that are suited to Autonomous Systems,

 Runtime Verification or other formal 
approaches to deal with the gap between 
models/simulations and the real world

 Verification against safety assurance 
arguments or standards documents,

 Case Studies that identify challenges when 
applying formal methods to autonomous 
systems

https://fmasworkshop.github.io/FMAS2023/

M. Farrell (University of Manchester) Building Specifications in EVT CPS Seminar 48 / 48


